Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme

Abstract

Chromosome 1p36.23 is frequently deleted in glioblastoma multiforme (GBM). miR-34a localizes in this region. Our experiments found that miR-34a was often deleted and epidermal growth factor receptor (EGFR) was frequently amplified in genomic DNA of 55 GBMs using single-nucleotide polymorphism DNA microarray. Notably, we found that the mean survival time was significantly shortened for patients whose GBMs had both EGFR amplification and miR-34a deletion. Expression of miR-34a was significantly lower in GBM samples compared with normal brain tissue. Forced expression of miR-34a in GBM cells decreased their ability to migrate and profoundly decreased their levels of cyclin-A1, -B1, -D1, and -D3, as well as cyclin-dependent kinase and increased expression of cyclin kinase inhibitor proteins (p21, p27). Also, human GBM cells (U251) stable overexpressing mir-34a formed smaller tumors when growing as xenografts in immunodeficient mice compared with wild-type U251 GBM cells. Furthermore, the protein expression of EGFR decreased in the cells with forced overexpression of miR-34a. Additional studies showed that mir-34a targeted Yin Yang-1 (YY1) and YY1 is a transcription factor that can stimulate the expression of EGFR. Thus, our data suggest that miR-34a acts as a tumor suppressor by inhibiting growth of GBM cells in vitro and in vivo associated with moderating the expression of cell-cycle proteins and EGFR. Moreover, we discovered for the first time that both deletion of miR-34a and amplification of EGFR were associated with significantly decreased overall survival of GBM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 1998; 16: 2259–2264.

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  3. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt EE, Ichimura K, Reifenberger G, Collins VP . CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 1994; 54: 6321–6324.

    CAS  PubMed  Google Scholar 

  5. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN . CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 1996; 56: 150–153.

    CAS  PubMed  Google Scholar 

  6. Ghimenti C, Fiano V, Chiado-Piat L, Chio A, Cavalla P, Schiffer D . Deregulation of the p14ARF/Mdm2/p53 pathway and G1/S transition in two glioblastoma sets. J neuro oncol 2003; 61: 95–102.

    Article  Google Scholar 

  7. Yin D, Ogawa S, Kawamata N, Tunici P, Finocchiaro G, Eoli M et al. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res 2009; 7: 665–677.

    Article  CAS  PubMed  Google Scholar 

  8. Ljubimova JY, Khazenzon NM, Chen Z, Neyman YI, Turner L, Riedinger MS et al. Gene expression abnormalities in human glial tumors identified by gene array. Int J Oncol 2001; 18: 287–295.

    CAS  PubMed  Google Scholar 

  9. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  10. Welch C, Chen Y, Stallings RL . MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26: 5017–5022.

    Article  CAS  PubMed  Google Scholar 

  11. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 2008; 6: 735–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6: 1586–1593.

    Article  CAS  PubMed  Google Scholar 

  15. Bheda A, Creek KE, Pirisi L . Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene 2008; 27: 4315–4323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ragnarsson G, Eiriksdottir G, Johannsdottir JT, Jonasson JG, Egilsson V, Ingvarsson S . Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival. Br J Cancer 1999; 79: 1468–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Solomon DA, Kim JS, Jenkins S, Ressom H, Huang M, Coppa N et al. Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme. Cancer Res 2008; 68: 2564–2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. . Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 2005; 11: 1119–1128.

    CAS  PubMed  Google Scholar 

  19. Ichimura K, Vogazianou AP, Liu L, Pearson DM, Backlund LM, Plant K et al. 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene 2008; 27: 2097–2108.

    Article  CAS  PubMed  Google Scholar 

  20. Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D et al. CHD5 is a tumor suppressor at human 1p36. Cell 2007; 128: 459–475.

    Article  CAS  PubMed  Google Scholar 

  21. Dong Z, Pang JS, Ng MH, Poon WS, Zhou L, Ng HK. . Identification of two contiguous minimally deleted regions on chromosome 1p36.31-p36.32 in oligodendroglial tumours. Br J Cancer 2004; 91: 1105–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feinberg-Gorenshtein G, Avigad S, Jeison M, Halevy-Berco G, Mardoukh J, Luria D et al. Reduced levels of miR-34a in neuroblastoma are not caused by mutations in the TP53 binding site. Genes Chromosomes Cancer 2009; 48: 539–543.

    Article  CAS  PubMed  Google Scholar 

  23. Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P et al. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27: 5204–5213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 2007; 40: 1435–1440.

    Article  CAS  PubMed  Google Scholar 

  25. Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest Ophthalmol Vis Sci 2009; 50: 1559–1565.

    Article  PubMed  Google Scholar 

  26. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–15477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB . MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol Ther 2008; 7: 1288–1296.

    Article  CAS  PubMed  Google Scholar 

  28. Chen H, Wang N, Burmeister M, McInnis MG . MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 2009; 12: 1–7.

    Article  Google Scholar 

  29. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 2009; 275: 44–53.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69: 7569–7576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guessous F, Zhang Y, Kofman A . Catania A, Li Y, Schiff D et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  32. Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D et al. miR-34c is down regulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 2010; 127: 2768–2776.

    Article  CAS  PubMed  Google Scholar 

  33. Lee CH, Subramanian S, Beck AH, Espinosa I, Senz J, Zhu SX et al. MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS One 2009; 4: e7314.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    Article  CAS  PubMed  Google Scholar 

  35. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7: 2591–2600.

    Article  CAS  PubMed  Google Scholar 

  36. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 2008; 582: 1564–1568.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M et al. Functional copy-number alterations in cancer. PLoS One 2008; 3: e3179.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res 2001; 7: 2387–2395.

    CAS  PubMed  Google Scholar 

  39. Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Roh S, Hoffmann R et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and micro-array analysis. Mol Cell Proteomics 2011; 10: 462–478.

    Article  Google Scholar 

  40. Chen QR, Yu LR, Tsang P, Wei JS, Song YK, Cheuk A et al. Systematic proteome analysis identifies transcription factor YY1 as a direct target of miR-34a. J Proteome Res 2011; 10: 479–487.

    Article  CAS  PubMed  Google Scholar 

  41. Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 2005; 65: 6071–6079.

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto G, Nannya Y, Kato M, Sanada M, Levine RL, Kawamata N et al. Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. Am J Hum Genet 2007; 81: 114–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003; 33: 396–400.

    Article  CAS  PubMed  Google Scholar 

  44. Yin D, Chen W, O'Kelly J, Lu D, Ham M, Doan NB et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer 2010; 127: 2257–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health grant 1U54CA143930-02 and 5R01CA026038-32, Tom Collier Foundation, A *STAR award of Singapore (HPK); a grant from the Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center (KLB); NSFC grant 81071788, ‘985 project’ of Sun Yat-sen University. HPK is a member of the Molecular Biology Institute and Jonsson Comprehensive Cancer Center at UCLA, and holds the endowed Mark Goodson Chair of Oncology Research at Cedars-Sinai Medical Center/UCLA School of Medicine. This study is in loving memory of Matt Schreck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Yin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, D., Ogawa, S., Kawamata, N. et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 32, 1155–1163 (2013). https://doi.org/10.1038/onc.2012.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.132

Keywords

This article is cited by

Search

Quick links