Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL

Abstract

TRAIL (TNF (tumour necrosis factor)-related apoptosis-inducing ligand) a putative anti-cancer cytokine induces apoptosis through DISC (death-inducing signalling complex)-mediated activation of caspase-8 and/or cleavage of Bid. TRAIL is relatively specific for tumour cells but primary chronic lymphocytic leukaemia and mantle cell lymphoma (MCL) cells are resistant. Herein, we show that cellular metabolism influences cell death and that MCL cells (Z138 cell line) can survive/proliferate in glucose-free media by switching from aerobic glycolysis to ‘coupled’ oxidative phosphorylation. Extracellular flux analysis and mitochondrial inhibitors reveal that in the absence of glycolysis, Z138 cells have enhanced respiratory capacity coupled to ATP synthesis, similar to ‘classical’ state 3 mitochondria. Conversely, 2-deoxyglucose (2DG) blocked glycolysis and partially inhibited glycolytic-dependent oxidative phosphorylation, resulting in a 50% reduction in cellular ATP levels. Also, 2DG sensitised Z138 cells to TRAIL and induced a marked decrease in caspase-8, -3, cFLIPS, Bid and Mcl-1 expression but Bak remained unchanged, altering the Mcl-1/Bak ratio, facilitating cytochrome c release and cell death. Conversely, under glucose-free conditions, Z138 cells were less sensitive to TRAIL with reduced TRAIL-R1/R2 surface receptor expression and impaired DISC formation. Anti-apoptotic proteins Bcl-2 and XIAP were up-regulated while pro-apoptotic BAX was down-regulated. Additionally, mitochondria had higher levels of cytochrome c and ultrastucturally exhibited a condensed configuration with enhanced intracristal spaces. Thus, metabolic switching was accompanied by mitochondrial proteome and ultrastructural remodelling enabling enhanced respiration activity. Cytochrome c release was decreased in glucose-free cells, suggesting that either pore formation was inhibited or that cytochrome c was more tightly bound. Glucose-free Z138 cells were also resistant to intrinsic cell death stimuli (ABT-737 and ionising radiation). In summary, in MCL cells, the anti-glycolytic effects of 2DG and glucose restriction produced opposite effects on TRAIL-induced cell death, demonstrating that mitochondrial metabolism directly modulates sensitivity of tumour cells to apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Warburg O . On respiratory impairment in cancer cells. Science 1956; 124: 269–270.

    CAS  PubMed  Google Scholar 

  2. Gambhir SS . Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002; 2: 683–693.

    Article  CAS  PubMed  Google Scholar 

  3. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2007; 7: 11–20.

    Article  Google Scholar 

  4. Pelicano H, Martin DS, Xu RH, Huang P . Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25: 4633–4646.

    Article  CAS  PubMed  Google Scholar 

  5. Adrain C, Martin SJ . The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 2001; 26: 390–397.

    Article  CAS  PubMed  Google Scholar 

  6. Cain K, Bratton SB, Cohen GM . The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 2002; 84: 203–214.

    Article  CAS  PubMed  Google Scholar 

  7. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP . Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17: 331–367.

    Article  CAS  PubMed  Google Scholar 

  8. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  9. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  10. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  11. Dyer MJ, MacFarlane M, Cohen GM . Barriers to effective TRAIL-targeted therapy of malignancy. J Clin Oncol 2007; 25: 4505–4506.

    Article  PubMed  Google Scholar 

  12. Ashkenazi A . Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2: 420–430.

    Article  CAS  PubMed  Google Scholar 

  13. Falschlehner C, Schaefer U, Walczak H . Following TRAIL's path in the immune system. Immunology 2009; 127: 145–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M . Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 2009; 35: 265–279.

    Article  CAS  PubMed  Google Scholar 

  15. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME . Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 1999; 274: 22532–22538.

    Article  CAS  PubMed  Google Scholar 

  16. Fulda S, Meyer E, Debatin KM . Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 2002; 21: 2283–2294.

    Article  CAS  PubMed  Google Scholar 

  17. Samraj AK, Keil E, Ueffing N, Schulze-Osthoff K, Schmitz I . Loss of caspase-9 provides genetic evidence for the type I/II concept of CD95-mediated apoptosis. J Biol Chem 2006; 281: 29652–29659.

    Article  CAS  PubMed  Google Scholar 

  18. LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002; 8: 274–281.

    Article  CAS  PubMed  Google Scholar 

  19. Thakkar NS, Potten CS . Inhibition of doxorubicin-induced apoptosis in vivo by 2-deoxy-D-glucose. Cancer Res 1993; 53: 2057–2060.

    CAS  PubMed  Google Scholar 

  20. Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K . Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis. J Exp Med 1998; 188: 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P . Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185: 1481–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y . Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 2005; 12: 1390–1397.

    Article  CAS  PubMed  Google Scholar 

  23. Halicka HD, Ardelt B, Li X, Melamed MM, Darzynkiewicz Z . 2-Deoxy-D-glucose enhances sensitivity of human histiocytic lymphoma U937 cells to apoptosis induced by tumor necrosis factor. Cancer Res 1995; 55: 444–449.

    CAS  PubMed  Google Scholar 

  24. Nam SY, Amoscato AA, Lee YJ . Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway. Oncogene 2002; 21: 337–346.

    Article  CAS  PubMed  Google Scholar 

  25. Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de AC, Palacios C, Lopez-Rivas A . Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 2003; 278: 12759–12768.

    Article  CAS  PubMed  Google Scholar 

  26. Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther 2008; 7: 3546–3555.

    Article  CAS  PubMed  Google Scholar 

  27. Parniak M, Kalant N . Incorporation of glucose into glycogen in primary cultures of rat hepatocytes. Can J Biochem Cell Biol 1985; 63: 333–340.

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Jiang CC, Lavis CJ, Croft A, Dong L, Tseng HY et al. 2-Deoxy-D-glucose enhances TRAIL-induced apoptosis in human melanoma cells through XBP-1-mediated up-regulation of TRAIL-R2. Mol Cancer 2009; 8: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pradelli LA, Beneteau M, Chauvin C, Jacquin MA, Marchetti S, Munoz-Pinedo C et al. Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 2009; 29: 1641–1652.

    Article  PubMed  Google Scholar 

  30. MacFarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJ, Cohen GM . TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 2005; 65: 11265–11270.

    Article  CAS  PubMed  Google Scholar 

  31. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 2007; 13: 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  32. Marino K, Bones J, Kattla JJ, Rudd PM . A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 2010; 6: 713–723.

    Article  CAS  PubMed  Google Scholar 

  33. Heiskanen KM, Bhat MB, Wang HW, Ma J, Nieminen AL . Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem 1999; 274: 5654–5658.

    Article  CAS  PubMed  Google Scholar 

  34. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hackenbrock CR . Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 1966; 30: 269–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coloff JL, Macintyre AN, Nichols AG, Liu T, Gallo CA, Plas DR et al. Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition. Cancer Res 2011; 71: 5204–5213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamaguchi R, Janssen E, Perkins G, Ellisman M, Kitada S, Reed JC . Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One 2011; 6: e24102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zagorodna O, Martin SM, Rutkowski DT, Kuwana T, Spitz DR, Knudson CM . 2-Deoxyglucose-induced toxicity is regulated by Bcl-2 family members and is enhanced by antagonizing Bcl-2 in lymphoma cell lines. Oncogene 2011. Advance online publication, 10 October 2011; doi:10.1038/onc.2011.454.

  39. Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005; 24: 1348–1358.

    Article  CAS  PubMed  Google Scholar 

  40. Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamaki T, Johnson MS et al. Rapid turnover of c-FLIP short is determined by its unique C-terminal tail. J Biol Chem 2005; 280: 27345–27355.

    Article  CAS  PubMed  Google Scholar 

  41. Merino R, Ding L, Veis DJ, Korsmeyer SJ, Nunez G . Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J 1994; 13: 683–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillissen B, Wendt J, Richter A, Muer A, Overkamp T, Gebhardt N et al. Endogenous Bak inhibitors Mcl-1 and Bcl-xL: differential impact on TRAIL resistance in Bax-deficient carcinoma. J Cell Biol 2010; 188: 851–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C . Sugar-free approaches to cancer cell killing. Oncogene 2011; 30: 253–264.

    Article  CAS  PubMed  Google Scholar 

  44. Chance B, Williams GR . The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 1956; 17: 65–134.

    CAS  PubMed  Google Scholar 

  45. Hardie DG . New roles for the LKB1-->AMPK pathway. Curr Opin Cell Biol 2005; 2: 167–173.

    Article  Google Scholar 

  46. Benard G, Rossignol R . Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 2008; 10: 1313–1342.

    Article  CAS  PubMed  Google Scholar 

  47. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA . Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 2004; 1: 64:985–64:993.

    Google Scholar 

  48. Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K . Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 2009; 8: 1501–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 2010; 11: 265–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 2007; 292: C125–CC36.

    Article  CAS  PubMed  Google Scholar 

  51. Harper N, MacFarlane M . Recombinant TRAIL and TRAIL receptor analysis. Methods Enzymol 2008; 446: 293–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M MacFarlane or K Cain.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, G., Dinsdale, D., MacFarlane, M. et al. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL. Oncogene 31, 4996–5006 (2012). https://doi.org/10.1038/onc.2012.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.13

Keywords

This article is cited by

Search

Quick links