Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells

Abstract

Neuroblastoma is a neural crest-derived embryonal tumour of the postganglionic sympathetic nervous system and a disease with several different chromosomal gains and losses, which include MYCN-amplified neuroblastoma on chromosome 2, deletions of parts of the chromosomes 1p and 11q, gain of parts of 17q and triploidy. Recently, activating mutations of the ALK (Anaplastic Lymphoma Kinase) RTK (Receptor Tyrosine Kinase) gene have been described in neuroblastoma. A meta-analysis of neuroblastoma cases revealed that ALK mutations (49 of 709 cases) in relation to genomic subtype were most frequently observed in MYCN amplified tumours (8.9%), correlating with a poor clinical outcome. MYCN proteins target proliferation and apoptotic pathways, and have an important role in the progression of neuroblastoma. Here, we show that both wild-type and gain-of-function mutants in ALK are able to stimulate transcription at the MYCN promoter and initiate mRNA transcription of the MYCN gene in both neuronal and neuroblastoma cell lines. Further, this stimulation of MYCN gene transcription and de novo MYCN protein expression is abrogated by specific ALK inhibitors, such as crizotinib (PF-2341066), NVP-TAE684, and by small interfering RNA to ALK resulting in a decrease in proliferation rate. Finally, co-transfection of ALK gain-of-function mutations together with MYCN leads to an increase in transformation potential. Taken together, our results indicate that ALK signalling regulates initiation of transcription of the MYCN gene providing a possible explanation for the poor clinical outcome observed when MYCN is amplified together with activated ALK.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res 2010; 16: 4353–4362.

    Article  CAS  Google Scholar 

  2. Maris JM, Hogarty MD, Bagatell R, Cohn SL . Neuroblastoma. Lancet 2007; 369: 2106–2120.

    Article  CAS  Google Scholar 

  3. Brodeur GM . Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    Article  CAS  Google Scholar 

  4. Janoueix-Lerosey I, Schleiermacher G, Michels E, Mosseri V, Ribeiro A, Lequin D et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 2009; 27: 1026–1033.

    Article  Google Scholar 

  5. Michels E, Vandesompele J, De Preter K, Hoebeeck J, Vermeulen J, Schramm A et al. ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer 2007; 46: 1098–1108.

    Article  CAS  Google Scholar 

  6. Vandesompele J, Baudis M, De Preter K, Van Roy N, Ambros P, Bown N et al. Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. J Clin Oncol 2005; 23: 2280–2299.

    Article  CAS  Google Scholar 

  7. Caren H, Abel F, Kogner P, Martinsson T . High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 2008; 416: 153–159.

    Article  CAS  Google Scholar 

  8. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455: 971–974.

    Article  CAS  Google Scholar 

  9. George RE, Sanda T, Hanna M, Frohling S, Luther 2nd W, Zhang J et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008; 455: 975–978.

    Article  CAS  Google Scholar 

  10. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008; 455: 967–970.

    Article  CAS  Google Scholar 

  11. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008; 455: 930–935.

    Article  CAS  Google Scholar 

  12. Palmer RH, Vernersson E, Grabbe C, Hallberg B . Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 2009; 420: 345–361.

    Article  CAS  Google Scholar 

  13. Goodman LA, Liu BC, Thiele CJ, Schmidt ML, Cohn SL, Yamashiro JM et al. Modulation of N-myc expression alters the invasiveness of neuroblastoma. Clin Exp Metastasis 1997; 15: 130–139.

    Article  CAS  Google Scholar 

  14. Hatzi E, Breit S, Zoephel A, Ashman K, Tontsch U, Ahorn H et al. MYCN oncogene and angiogenesis: down-regulation of endothelial growth inhibitors in human neuroblastoma cells. Purification, structural, and functional characterization. Adv Exp Med Biol 2000; 476: 239–248.

    Article  CAS  Google Scholar 

  15. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313: 1111–1116.

    Article  CAS  Google Scholar 

  16. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM . Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997; 16: 2985–2995.

    Article  CAS  Google Scholar 

  17. Gustafson WC, Weiss WA . Myc proteins as therapeutic targets. Oncogene 2010; 29: 1249–1259.

    Article  CAS  Google Scholar 

  18. Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 2005; 9: 327–338.

    Article  CAS  Google Scholar 

  19. Arnold HK, Sears RC . Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 2006; 26: 2832–2844.

    Article  CAS  Google Scholar 

  20. Arnold HK, Zhang X, Daniel CJ, Tibbitts D, Escamilla-Powers J, Farrell A et al. The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J 2009; 28: 500–512.

    Article  CAS  Google Scholar 

  21. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 2009; 15: 67–78.

    Article  CAS  Google Scholar 

  22. Chesler L, Schlieve C, Goldenberg DD, Kenney A, Kim G, McMillan A et al. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 2006; 66: 8139–8146.

    Article  CAS  Google Scholar 

  23. Brognard J, Hunter T . Protein kinase signaling networks in cancer. Curr Opin Genet Dev 2011; 21: 4–11.

    Article  CAS  Google Scholar 

  24. Porter AC, Vaillancourt RR . Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 1998; 17 (11 Reviews): 1343–1352.

    Article  CAS  Google Scholar 

  25. Gualdrini F, Corvetta D, Cantilena S, Chayka O, Tanno B, Raschella G et al. Addiction of MYCN amplified tumours to B-MYB underscores a reciprocal regulatory loop. Oncotarget 2010; 1: 278–288.

    PubMed  PubMed Central  Google Scholar 

  26. Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC et al. Crizotinib in ALK-Rearranged Inflammatory Myofibroblastic Tumor. N Engl J Med 2010; 363: 1727–1733.

    Article  CAS  Google Scholar 

  27. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al. EML4-ALK Mutations in Lung Cancer That Confer Resistance to ALK Inhibitors. N Engl J Med 2010; 363: 1734–1739.

    Article  CAS  Google Scholar 

  28. Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 2007; 6 (12 Part 1): 3314–3322.

    Article  CAS  Google Scholar 

  29. Hallberg B, Palmer RH . Crizotinib--latest champion in the cancer wars? N Engl J Med 2010; 363: 1760–1762.

    Article  CAS  Google Scholar 

  30. Kwak EL, Bang Y-J, Camidge DR, Shaw AT, Solomon B, Maki RG et al. Anaplastic Lymphoma Kinase Inhibition in Non—Small-Cell Lung Cancer. N Engl J Med 2010; 363: 1693–1703.

    Article  CAS  Google Scholar 

  31. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 2007; 67: 4408–4417.

    Article  CAS  Google Scholar 

  32. Hallberg B, Palmer RH . ALK and NSCLC: Targeted therapy with ALK inhibitors. F1000 Med Reports 2011; 3: (doi:10.3410/M3-21).

  33. Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA 2007; 104: 270–275.

    Article  CAS  Google Scholar 

  34. Li Y, Ye X, Liu J, Zha J, Pei L . Evaluation of EML4-ALK fusion proteins in non-small cell lung cancer using small molecule inhibitors. Neoplasia 2011; 13: 1–11.

    Article  Google Scholar 

  35. Martinsson T, Eriksson T, Abrahamsson J, Caren H, Hansson M, Kogner P et al. Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumour progression and unresponsiveness to therapy. Cancer Res 2011; 71: 98–105.

    Article  CAS  Google Scholar 

  36. Schonherr C, Ruuth K, Yamazaki Y, Eriksson T, Christensen J, Palmer RH et al. Activating ALK mutations found in neuroblastoma are inhibited by Crizotinib and NVP-TAE684. Biochem J 2011; 440: 405–413.

    Article  Google Scholar 

  37. Schonherr C, Yang HL, Vigny M, Palmer RH, Hallberg B . Anaplastic lymphoma kinase activates the small GTPase Rap1 via the Rap1-specific GEF C3G in both neuroblastoma and PC12 cells. Oncogene 2010; 29: 2817–2830.

    Article  CAS  Google Scholar 

  38. Combaret V, Turc-Carel C, Thiesse P, Rebillard AC, Frappaz D, Haus O et al. Sensitive detection of numerical and structural aberrations of chromosome 1 in neuroblastoma by interphase fluorescence in situ hybridization. Comparison with restriction fragment length polymorphism and conventional cytogenetic analyses. Int J Cancer 1995; 61: 185–191.

    Article  CAS  Google Scholar 

  39. Schleiermacher G, Janoueix-Lerosey I, Combaret V, Derre J, Couturier J, Aurias A et al. Combined 24-color karyotyping and comparative genomic hybridization analysis indicates predominant rearrangements of early replicating chromosome regions in neuroblastoma. Cancer Genet Cytogenet 2003; 141: 32–42.

    Article  CAS  Google Scholar 

  40. Tartari CJ, Gunby RH, Coluccia AM, Sottocornola R, Cimbro B, Scapozza L et al. Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase. J Biol Chem 2008; 283: 3743–3750.

    Article  CAS  Google Scholar 

  41. Berwanger B, Hartmann O, Bergmann E, Bernard S, Nielsen D, Krause M et al. Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2002; 2: 377–386.

    Article  CAS  Google Scholar 

  42. Johnsen JI, Segerstrom L, Orrego A, Elfman L, Henriksson M, Kagedal B et al. Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 2008; 27: 2910–2922.

    Article  CAS  Google Scholar 

  43. Misawa A, Hosoi H, Tsuchiya K, Sugimoto T . Rapamycin inhibits proliferation of human neuroblastoma cells without suppression of MycN. Int J Cancer 2003; 104: 233–237.

    Article  CAS  Google Scholar 

  44. Obrig TG, Culp WJ, Mckeehan WL, Hardesty B . Mechanism by Which Cycloheximide and Related Glutarimide Antibiotics Inhibit Peptide Synthesis on Reticulocyte Ribosomes. J Biol Chem 1971; 246: 174–181.

    CAS  PubMed  Google Scholar 

  45. Lee DH, Goldberg AL . Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998; 8: 397–403.

    Article  CAS  Google Scholar 

  46. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci USA 2006; 103: 2316–2321.

    Article  CAS  Google Scholar 

  47. Berthier A, Piqueras M, Villamon E, Berbegall A, Tadeo I, Castel V et al. Anaplastic lymphoma kinase expression in neuroblastomas and its relationship with genetic, prognostic, and predictive factors. Hum Pathol 2011; 42: 301–302.

    Article  Google Scholar 

  48. Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J et al. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J Biol Chem 2005; 280: 26039–26048.

    Article  CAS  Google Scholar 

  49. Yang HL, Eriksson T, Vernersson E, Vigny M, Hallberg B, Palmer RH . The ligand Jelly Belly (Jeb) activates the Drosophila Alk RTK to drive PC12 cell differentiation, but is unable to activate the mouse ALK RTK. J Exp Zool B Mol Dev Evol 2007; 308: 269–282.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Marc Vigny and Arturo Sala for support and the pGL2-N-myc-luc plasmid, respectively. Crizotinib was a generous gift from Pfizer and the neuroblastoma cell lines were from Valerie Combaret, Centre Léon Bérard, France under MTA. This work has been supported by grants from the Swedish Cancer Society (BH 08-0597), the Children's Cancer Foundation (BH 08/084; RHP 08/074), the Swedish Research Council (RHP 621-2003-3399), Lions Cancer Society, Umeå, Association for International Cancer Research (RHP 08-0177). SK is a Children's Cancer Foundation fellow (NBCNSPDHEL09/002). RHP is a Swedish Cancer Foundation Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R H Palmer or B Hallberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönherr, C., Ruuth, K., Kamaraj, S. et al. Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 31, 5193–5200 (2012). https://doi.org/10.1038/onc.2012.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.12

Keywords

This article is cited by

Search

Quick links