Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p14ARF inhibits the growth of lung adenocarcinoma cells harbouring an EGFR L858R mutation by activating a STAT3-dependent pro-apoptotic signalling pathway

A Correction to this article was published on 04 May 2021

This article has been updated

Abstract

Epidermal growth factor receptor (EGFR) stimulates proliferative and survival signals. Activating mutations of EGFR are involved in the aetiology and maintenance of the malignant phenotype of lung tumours. We previously described the frequent association of these mutations with the decreased expression of the p14ARF tumour suppressor, another common feature of lung cancer. Based on these data, we postulated that p14ARF could protect cells against untimely or excessive mitotic signals induced by mutant EGFR. In this study, we demonstrate that p14ARF promotes apoptosis in lung tumour cells harbouring the EGFR L858R mutation through the accumulation of phosphorylated signal transducer and activator of transcription 3 (STAT3) on Tyr 705 residue, which leads to Bcl-2 downregulation. Using siRNA against PTP-RT, the phosphatase that specifically targets Tyr 705 residue, we show that accumulation of pSTAT3-Tyr705 promotes EGFR L858R mutant cell death, thereby confirming the existence of a STAT3-dependent pro-apoptotic pathway in these cells. Finally, we show that the expression of the EGFR L858R mutant represses p14ARF expression and inhibits STAT3/Bcl-2 signalling. These results identify a novel link between the p14ARF and EGFR pathways and suggest that EGFR L858R counteracts the pro-apoptotic function of p14ARF by downregulating its expression to promote carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

References

  1. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  Google Scholar 

  2. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW . Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284: 31–53.

    Article  CAS  Google Scholar 

  3. Yarden Y . The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37 (Suppl 4): S3–S8.

    Article  CAS  Google Scholar 

  4. Olayioye MA, Neve RM, Lane HA, Hynes NE . The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167.

    Article  CAS  Google Scholar 

  5. Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep 2000; 7: 603–607.

    CAS  PubMed  Google Scholar 

  6. Hirsch FR, Varella-Garcia M, Bunn Jr PA, Di Maria MV, Veve R, Bremmes RM et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 2003; 21: 3798–3807.

    Article  CAS  Google Scholar 

  7. Nicholson RI, Gee JM, Harper ME . EGFR and cancer prognosis. Eur J Cancer 2001; 37 (Suppl 4): S9–15.

    Article  CAS  Google Scholar 

  8. Krause DS, Van Etten RA . Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.

    Article  CAS  Google Scholar 

  9. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from ″never smokers″ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    Article  CAS  Google Scholar 

  10. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  Google Scholar 

  11. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  Google Scholar 

  12. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005; 97: 339–346.

    Article  CAS  Google Scholar 

  13. Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005; 2: e313.

    Article  Google Scholar 

  14. Jiang J, Greulich H, Janne PA, Sellers WR, Meyerson M, Griffin JD . Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res 2005; 65: 8968–8974.

    Article  CAS  Google Scholar 

  15. Sordella R, Bell DW, Haber DA, Settleman J . Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305: 1163–1167.

    Article  CAS  Google Scholar 

  16. Zhong Z, Wen Z, Darnell Jr JE . Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264: 95–98.

    Article  CAS  Google Scholar 

  17. Bowman T, Garcia R, Turkson J, Jove R . STATs in oncogenesis. Oncogene 2000; 19: 2474–2488.

    Article  CAS  Google Scholar 

  18. Bromberg J, Darnell Jr JE . The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000; 19: 2468–2473.

    Article  CAS  Google Scholar 

  19. Levy DE, Darnell Jr JE . Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651–662.

    Article  CAS  Google Scholar 

  20. Mukohara T, Kudoh S, Yamauchi S, Kimura T, Yoshimura N, Kanazawa H et al. Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC). Lung Cancer 2003; 41: 123–130.

    Article  Google Scholar 

  21. Haura EB, Zheng Z, Song L, Cantor A, Bepler G . Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res 2005; 11: 8288–8294.

    Article  CAS  Google Scholar 

  22. Sherr CJ . The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2: 731–737.

    Article  CAS  Google Scholar 

  23. Ozenne P, Eymin B, Brambilla E, Gazzeri S . The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer 2010; 127: 2239–2247.

    Article  CAS  Google Scholar 

  24. Sherr CJ . Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6: 663–673.

    Article  CAS  Google Scholar 

  25. Eymin B, Leduc C, Coll JL, Brambilla E, Gazzeri S . p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 2003; 22: 1822–1835.

    Article  CAS  Google Scholar 

  26. Hsu HS, Wang YC, Tseng RC, Chang JW, Chen JT, Shih CM et al. 5′ Cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin Cancer Res 2004; 10: 4734–4741.

    Article  CAS  Google Scholar 

  27. Vonlanthen S, Heighway J, Tschan MP, Borner MM, Altermatt HJ, Kappeler A et al. Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene 1998; 17: 2779–2785.

    Article  CAS  Google Scholar 

  28. Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E . The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 1998; 58: 3926–3931.

    CAS  PubMed  Google Scholar 

  29. Mounawar M, Mukeria A, Le Calvez F, Hung RJ, Renard H, Cortot A et al. Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history. Cancer Res 2007; 67: 5667–5672.

    Article  CAS  Google Scholar 

  30. Narimatsu M, Maeda H, Itoh S, Atsumi T, Ohtani T, Nishida K et al. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol Cell Biol 2001; 21: 6615–6625.

    Article  CAS  Google Scholar 

  31. Ichiba M, Nakajima K, Yamanaka Y, Kiuchi N, Hirano T . Autoregulation of the Stat3 gene through cooperation with a cAMP-responsive element-binding protein. J Biol Chem 1998; 273: 6132–6138.

    Article  CAS  Google Scholar 

  32. Zhang X, Guo A, Yu J, Possemato A, Chen Y, Zheng W et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci USA 2007; 104: 4060–4064.

    Article  CAS  Google Scholar 

  33. Haura EB, Turkson J, Jove R . Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol 2005; 2: 315–324.

    Article  CAS  Google Scholar 

  34. O’Farrell AM, Liu Y, Moore KW, Mui AL . IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 1998; 17: 1006–1018.

    Article  Google Scholar 

  35. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N et al. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996; 15: 3651–3658.

    Article  CAS  Google Scholar 

  36. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci USA 1996; 93: 3963–3966.

    Article  CAS  Google Scholar 

  37. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 1999; 13: 2604–2616.

    Article  CAS  Google Scholar 

  38. Xiao H, Chung J, Kao HY, Yang YC . Tip60 is a co-repressor for STAT3. J Biol Chem 2003; 278: 11197–11204.

    Article  CAS  Google Scholar 

  39. Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E et al. p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 2006; 25: 4147–4154.

    Article  CAS  Google Scholar 

  40. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007; 117: 3846–3856.

    Article  CAS  Google Scholar 

  41. Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 2008; 14: 7237–7245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor A Gazdar for providing us with the H1975 and H3255 cellular models and Dr P Hainaut for the pcDNA3.1-EGFR-L858R expression vector. We also thank Céline Barrial-Lampreia and Pascal Perron for their technical assistance. This work was supported by Institut National de la Santé et de la Recherche Médicale U823, Association pour la Recherche sur le Cancer and la Fondation de France. PO is supported by AGIR à Dom. DD is supported by the Fond de dotation pour la recherche en santé respiratoire 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gazzeri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozenne, P., Dayde, D., Brambilla, E. et al. p14ARF inhibits the growth of lung adenocarcinoma cells harbouring an EGFR L858R mutation by activating a STAT3-dependent pro-apoptotic signalling pathway. Oncogene 32, 1050–1058 (2013). https://doi.org/10.1038/onc.2012.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.107

Keywords

This article is cited by

Search

Quick links