Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1

Abstract

Brain-specific angiogenesis inhibitor 1 (BAI1), an orphan G protein-coupled receptor-type seven transmembrane protein, was recently found mutated or silenced in multiple human cancers and can interfere with tumor growth when overexpressed. Yet, little is known about its regulation and the molecular mechanisms through which this novel tumor suppressor exerts its anti-cancer effects. Here, we demonstrate that the N terminus of BAI1 is cleaved extracellularly to generate a truncated receptor and a 40-kDa fragment (Vasculostatin-40) that inhibits angiogenesis. We demonstrate that this novel proteolytic processing event depends on a two-step cascade of protease activation: proprotein convertases, primarily furin, activate latent matrix metalloproteinase-14, which then directly cleaves BAI1 to release the bioactive fragment. These findings significantly augment our knowledge of BAI1 by showing a novel post-translational mechanism regulating BAI1 activity through cancer-associated proteases, have important implications for BAI1 function and regulation, and present novel opportunities for therapy of cancer and other vascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kaur B, Brat DJ, Calkins CC, Van Meir EG . Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol 2003; 162: 19–27.

    Article  CAS  Google Scholar 

  2. Nam DH, Park K, Suh YL, Kim JH . Expression of VEGF and brain specific angiogenesis inhibitor-1 in glioblastoma: prognostic significance. Oncol Rep 2004; 11: 863–869.

    CAS  PubMed  Google Scholar 

  3. Yoshida Y, Oshika Y, Fukushima Y, Tokunaga T, Hatanaka H, Kijima H et al. Expression of angiostatic factors in colorectal cancer. Int J Oncol 1999; 15: 1221–1225.

    CAS  PubMed  Google Scholar 

  4. Fukushima Y, Oshika Y, Tsuchida T, Tokunaga T, Hatanaka H, Kijima H et al. Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer. Int J Oncol 1998; 13: 967–970.

    CAS  PubMed  Google Scholar 

  5. Hatanaka H, Oshika Y, Abe Y, Yoshida Y, Hashimoto T, Handa A et al. Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BAI1). Int J Mol Med 2000; 5: 181–183.

    CAS  PubMed  Google Scholar 

  6. Kudo S, Konda R, Obara W, Kudo D, Tani K, Nakamura Y et al. Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma. Oncol Rep 2007; 18: 785–791.

    CAS  PubMed  Google Scholar 

  7. Duda DG, Sunamura M, Lozonschi L, Yokoyama T, Yatsuoka T, Motoi F et al. Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis. Br J Cancer 2002; 86: 490–496.

    Article  CAS  Google Scholar 

  8. Yoon KC, Ahn KY, Lee JH, Chun BJ, Park SW, Seo MS et al. Lipid-mediated delivery of brain-specific angiogenesis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model. Gene Ther 2005; 12: 617–624.

    Article  CAS  Google Scholar 

  9. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  Google Scholar 

  10. Zhu D, Hunter SB, Vertino PM, Van Meir EG . Overexpression of MBD2 contributes to epigenetic silencing of BAI1 in glioblastoma. Cancer Res 2011; 71: 5859–5870.

    Article  CAS  Google Scholar 

  11. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 1997; 15: 2145–2150.

    Article  CAS  Google Scholar 

  12. Cork SM, Van Meir EG . Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. J Mol Med 2011; 89: 743–752.

    Article  CAS  Google Scholar 

  13. Van Meir EG, Polverini PJ, Chazin VR, Huang H-JS, de Tribolet N, Cavenee WK . Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 1994; 8: 171–176.

    Article  CAS  Google Scholar 

  14. Zhang X, Lawler J . Thrombospondin-based antiangiogenic therapy. Microvasc Res 2007; 74: 90–99.

    Article  CAS  Google Scholar 

  15. Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP . Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 1999; 3: 147–158.

    Article  CAS  Google Scholar 

  16. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP . CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138: 707–717.

    Article  CAS  Google Scholar 

  17. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N . Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6: 41–48.

    Article  CAS  Google Scholar 

  18. de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG . Thrombospondins and tumor angiogenesis. Trends Mol Med 2001; 7: 401–407.

    Article  CAS  Google Scholar 

  19. Nicholson AC, Malik SB, Logsdon Jr JM, Van Meir EG . Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization. BMC Evol Biol 2005; 5: 11.

    Article  Google Scholar 

  20. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450: 430–434.

    Article  CAS  Google Scholar 

  21. Kaur B, Brat DJ, Devi NS, Van Meir EG . Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 2005; 24: 3632–3642.

    Article  CAS  Google Scholar 

  22. Hardcastle J, Kurozumi K, Dmitrieva N, Sayers MP, Ahmad S, Waterman P et al. Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther 2010; 18: 285–294.

    Article  CAS  Google Scholar 

  23. Kaur B, Cork SM, Sandberg EM, Devi NS, Zhang Z, Klenotic PA et al. Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res 2009; 69: 1212–1220.

    Article  CAS  Google Scholar 

  24. Guedez L, Rivera AM, Salloum R, Miller ML, Diegmueller JJ, Bungay PM et al. Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am J Pathol 2003; 162: 1431–1439.

    Article  CAS  Google Scholar 

  25. Takahashi S, Nakagawa T, Kasai K, Banno T, Duguay SJ, Van de Ven WJ et al. A second mutant allele of furin in the processing-incompetent cell line, LoVo. Evidence for involvement of the homo B domain in autocatalytic activation. J Biol Chem 1995; 270: 26565–26569.

    Article  CAS  Google Scholar 

  26. Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M . Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 1996; 393: 101–104.

    Article  CAS  Google Scholar 

  27. Cao J, Rehemtulla A, Pavlaki M, Kozarekar P, Chiarelli C . Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase. J Biol Chem 2005; 280: 10974–10980.

    Article  CAS  Google Scholar 

  28. Duckert P, Brunak S, Blom N . Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 2004; 17: 107–112.

    Article  CAS  Google Scholar 

  29. Thomas G . Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002; 3: 753–766.

    Article  CAS  Google Scholar 

  30. Fillmore HL, VanMeter TE, Broaddus WC . Membrane-type matrix metalloproteinases (MT-MMPs): expression and function during glioma invasion. J Neurooncol 2001; 53: 187–202.

    Article  CAS  Google Scholar 

  31. Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal-Hansen H et al. Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 2002; 195: 295–308.

    Article  CAS  Google Scholar 

  32. Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. Embo J 2001; 20: 4782–4793.

    Article  CAS  Google Scholar 

  33. Turk BE, Huang LL, Piro ET, Cantley LC . Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 2001; 19: 661–667.

    Article  CAS  Google Scholar 

  34. Bjarnadottir TK, Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB . The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 2004; 84: 23–33.

    Article  CAS  Google Scholar 

  35. Lin HH, Chang GW, Davies JQ, Stacey M, Harris J, Gordon S . Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 2004; 279: 31823–31832.

    Article  CAS  Google Scholar 

  36. Krasnoperov V, Lu Y, Buryanovsky L, Neubert TA, Ichtchenko K, Petrenko AG . Post-translational proteolytic processing of the calcium-independent receptor of alpha-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J Biol Chem 2002; 277: 46518–46526.

    Article  CAS  Google Scholar 

  37. Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA et al. Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum Mol Genet 2007; 16: 1972–1985.

    Article  CAS  Google Scholar 

  38. Hsiao CC, Cheng KF, Chen HY, Chou YH, Stacey M, Chang GW et al. Site-specific N-glycosylation regulates the GPS auto-proteolysis of CD97. FEBS Lett 2009; 583: 3285–3290.

    Article  CAS  Google Scholar 

  39. Klenotic PA, Huang P, Palomo J, Kaur B, Van Meir EG, Vogelbaum MA et al. Histidine-rich glycoprotein modulates the anti-angiogenic effects of vasculostatin. Am J Pathol 2010; 176: 2039–2050.

    Article  CAS  Google Scholar 

  40. Yee KO, Streit M, Hawighorst T, Detmar M, Lawler J . Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. Am J Pathol 2004; 165: 541–552.

    Article  CAS  Google Scholar 

  41. Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY . Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 2001; 276: 18415–18422.

    Article  CAS  Google Scholar 

  42. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370: 61–65.

    Article  CAS  Google Scholar 

  43. Bassi DE, Mahloogi H, Al-Saleem L, Lopez De Cicco R, Ridge JA, Klein-Szanto AJ . Elevated furin expression in aggressive human head and neck tumors and tumor cell lines. Mol Carcinog 2001; 31: 224–232.

    Article  CAS  Google Scholar 

  44. Mercapide J, Lopez De Cicco R, Bassi DE, Castresana JS, Thomas G, Klein-Szanto AJ . Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin Cancer Res 2002; 8: 1740–1746.

    CAS  PubMed  Google Scholar 

  45. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 1999; 9: 469–479.

    Article  CAS  Google Scholar 

  46. Beck-Sickinger AG, Grouzmann E, Hoffmann E, Gaida W, Van Meir EG, Waeber B et al. A novel cyclic analog of neuropeptide Y specific for the Y2 receptor. Eur J Biochem 1992; 206: 957–964.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Paper contributions. SMC performed Vstat40 characterization, angiogenesis, cleavage site detection and furin/MMP-14 protease identification experiments, and SMC and EGVM wrote the manuscript. NSD, BK, EMS and SK performed Vstat40 and protease identification experiments. LC and JHS performed the survival analysis. Experiments were conceived of and planned by the respective authors under the direction of EGVM. We appreciate the helpful advice and assistance of all members of the Laboratory of Molecular Neuro-Oncology. SMC was in the Emory graduate program in Neuroscience and acknowledges project guidance by her thesis committee (Drs Randy Hall, Robert McKeon, Paula Vertino and Wei Zhou). We thank Dr C Dubois (Université de Sherbrooke) for the kind gift of LoVo cells. The US National Institutes of Health (R01 CA86335 to EGVM and contract 29XS193 to JHS), P30 CA138292 (to the Winship Cancer Institute) and the Emory Neurosciences Initiative (to EGVM) contributed to the funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E G Van Meir.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cork, S., Kaur, B., Devi, N. et al. A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene 31, 5144–5152 (2012). https://doi.org/10.1038/onc.2012.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.1

Keywords

This article is cited by

Search

Quick links