Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RASSF1A inhibits estrogen receptor alpha expression and estrogen-independent signalling: implications for breast cancer development

Abstract

The Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor whose inactivation is implicated in the development of many human cancers, including breast carcinomas. Little is known about the tumor-suppressive function of RASSF1A in breast tissue and whether its inactivation is mechanistically involved in the initiation and progression of breast tumors. Here, we show that RASSF1A inhibits breast cancer growth in vivo, and suppresses estrogen receptor (ERα) expression and function. Reconstitution of RASSF1A in MCF7 cells led to decreased ERα levels and reduced sensitivity to estrogen (E2). Concomitantly, we observed decreased expression of Id1 as well as the E2-responsive genes Bcl-2 and c-Myc that cooperatively contribute to the immortalization and transformation of breast epithelial cells. This downregulation was associated with induction of cell-cycle arrest and senescence that constitute early barriers to cancer initiation and progression. Knockdown of ERα showed that downregulation of ERα suffices to increase senescence and inhibit expression of Bcl-2, c-Myc and Id1. However, enforced expression of ERα only partially rescued RASSF1A-mediated growth inhibition and senescence, suggesting that suppression of ERα expression and activity is not the only mechanism by which RASSF1A inhibits growth and survival of breast cancer cells. Ectopic expression of Bcl-2, c-Myc and Id1 had little or no effect on RASSF1A-mediated growth arrest, indicating that RASSF1A acts dominantly over these oncogenes. Mechanistically, RASSF1A was found to suppress ERα expression through Akt1. It also transiently inhibited ERα-induced Ras-MAPK activity after exposure of cells to E2. Together, our data show that RASSF1A acts as a tumor suppressor in ERα+ mammary epithelial cells, in part through inhibiting ERα expression and activity. These findings suggest that RASSF1A has a key role in suppressing the transformation of human breast epithelial cells and ERα+ breast cancer initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dammann R, Schagdarsurengin U, Seidel C, Strunnikova M, Rastetter M, Baier K et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 2005; 20: 645–663.

    CAS  Google Scholar 

  2. Sunami E, Shinozaki M, Sim MS, Nguyen SL, Vu AT, Giuliano AE et al. Estrogen receptor and HER2/neu status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res 2008; 10: R46.

    Article  Google Scholar 

  3. Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 2007; 9: R57.

    Article  Google Scholar 

  4. Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R . Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 2005; 11: 2156–2162.

    Article  CAS  Google Scholar 

  5. Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R . Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol 2005; 10: 3923–3933.

    Article  Google Scholar 

  6. Mueller SO, Clark JA, Myers PH, Korach KS . Mammary gland development in adult mice requires epithelial and stromal estrogen receptor {alpha}. Endocrinology 2002; 143: 2357–2365.

    Article  CAS  Google Scholar 

  7. Levin ER . Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 2005; 19: 1951–1959.

    Article  CAS  Google Scholar 

  8. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS . International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 2006; 58: 773–781.

    Article  CAS  Google Scholar 

  9. Keshamouni VG, Mattingly RR, Reddy KB . Mechanism of 17-β-estradiol-induced Erk1/2 activation in breast cancer cells. J Biol Chem 2002; 277: 22558–22565.

    Article  CAS  Google Scholar 

  10. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E . Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996; 15: 1292–1300.

    Article  CAS  Google Scholar 

  11. Razandi M, Pedram A, Park ST, Levin ER . Proximal events in signaling in plasma membrane estrogen receptors. J Biol Chem 2003; 278: 2701–2712.

    Article  CAS  Google Scholar 

  12. Simoncini T, Hafezi-Moghadam A, Brizil DP, Ley K, Chin WW, Liao JK . Interaction of estrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000; 407: 538–541.

    Article  CAS  Google Scholar 

  13. Castoria G, Migliaccio A, Bilancio A, Di Domenico M, de Falco A, Lombardi M . PI3-kinase in concert with Src promotes the S-phase entry of estradiol-stimulated MCF-7 cells. EMBO J 2001; 20: 6050–6059.

    Article  CAS  Google Scholar 

  14. Shoker BS, Jarvis C, Sibson DR, Walker C, Sloane JP . Oestrogen receptor expression in the normal and precancerous breast. J Pathol 1999; 188: 237–244.

    Article  CAS  Google Scholar 

  15. Khan SA, Rogers MA, Khurana KK, Meguid MM, Numann PJ . Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst 1998; 90: 37–42.

    Article  CAS  Google Scholar 

  16. Lawson JS, Field AS, Champion S, Tran D, Ishikura H, Trichopoulos D . Low oestrogen receptor alpha expression in normal breast tissue underlies low breast cancer incidence in Japan. Lancet 1999; 354: 1787–1788.

    Article  CAS  Google Scholar 

  17. Clarke RB, Howell A, Potten CS, Anderson E . Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 1997; 57: 4987–4991.

    CAS  Google Scholar 

  18. Shaaban AM, Sloane JP, West CR, Foster CS . Breast cancer risk in usual ductal hyperplasia is defined by estrogen receptor-α and Ki-67 expression. Am J Pathol 2002; 160: 597–604.

    Article  Google Scholar 

  19. Shoker BS, Jarvis C, Clarke RB, Anderson E, Munro C, Davis MPA . Abnormal regulations of the oestrogen receptor in benign breast lesions. J Clin Pathol 2000; 53: 778–783.

    Article  CAS  Google Scholar 

  20. Bartkova J, Rezaei N, Liontos M, Karakeidos P, Kletsas D, Issaeya N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  Google Scholar 

  21. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  Google Scholar 

  22. Perillo B, Sasso A, Abbondanza C, Palumbo G . 17β-Estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol 2000; 20: 2890–2901.

    Article  CAS  Google Scholar 

  23. Magro G, Bisceglia M, Michal M . Expression of steroid hormone receptors, their regulated proteins, and bcl-2 protein in myofibroblastoma of the breast. Histopathology 2000; 36: 515–521.

    Article  CAS  Google Scholar 

  24. Yang Q, Sakurai T, Jing X, Utsunomiya H, Shan L, Nakamura Y et al. Expression of Bcl-2, but not Bax, correlates with estrogen receptor status and tumor proliferation in invasive breast carcinoma. Pathol Int 1999; 49: 775–780.

    Article  CAS  Google Scholar 

  25. Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS . Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol 2007; 82: 85–90.

    Article  CAS  Google Scholar 

  26. Reed JC, Haldar S, Croce CM, Cuddy MP . Complementation by BCL-2 and C-HA-RAS oncogenes in malignant transformation of rat embryo fibroblast. Mol Cell Biol 1990; 10: 4370–4374.

    Article  CAS  Google Scholar 

  27. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumors induced in transgenic mice by co-operation between myc and bcl-2. Nature 1990; 348: 331–333.

    Article  CAS  Google Scholar 

  28. Dubik D, Shiu RP . Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 1992; 7: 1587–1594.

    CAS  Google Scholar 

  29. Gartel AL, Ye X, Goufman E, Shianova P, Hay N, Najmabandi F . Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA 2001; 98: 4510–4515.

    Article  CAS  Google Scholar 

  30. Zhao JJ, Gjoerup OV, Subramanian RR, Cheng Y, Chen W, Roberts TM et al. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 2003; 3: 483–495.

    Article  CAS  Google Scholar 

  31. Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH et al. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res 2000; 60: 1332–1340.

    CAS  PubMed  Google Scholar 

  32. Peverali FA, Ramqvist T, Saffrich R, Barone MV, Philipson L . Regulation of G1 progression by E2A and Id helix-loop-helix proteins. EMBO J 1994; 13: 4291–4301.

    Article  CAS  Google Scholar 

  33. Prabhu S, Ignatova A, Park ST, Sun XH . Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id. Mol Cell Biol 1997; 17: 5888–5896.

    Article  CAS  Google Scholar 

  34. Ohtani N, Zebedee Z, Hout TJG, Stinson JA, Sugimoto M, Ohashi Y et al. Opposing effects of ETS and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409: 1067–1070.

    Article  CAS  Google Scholar 

  35. Swabrick A, Roy E, Allen T, Bishop JM . Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA 2008; 105: 5402–5407.

    Article  Google Scholar 

  36. Norton JD, Atherton GT . Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol 1998; 18: 2371–2381.

    Article  CAS  Google Scholar 

  37. Campell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H . Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 2001; 276: 9817–9824.

    Article  Google Scholar 

  38. Faridi J, Wang L, Endemann G, Roth RA . Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. Clin Cancer Res 2003; 9: 2933–2939.

    CAS  PubMed  Google Scholar 

  39. Kasid A, Lippman ME, Papageorge AG, Lowy DR, Gelmann EP . Transfection of v-rasH DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumorigenicity. Science 1985; 228: 725–728.

    Article  CAS  Google Scholar 

  40. Thaler S, Hähnel PS, Schad A, Dammann R, Schuler M . RASSF1A mediates p21Cip1/Waf1-dependent cell cycle arrest and senescence through modulation of the Raf-MEK-ERK pathway and inhibition of Akt. Cancer Res 2009; 69: 1748–1757.

    Article  CAS  Google Scholar 

  41. Fowler AM, Solodin NM, Valley CC, Alarid ET . Altered target gene regulation controlled by estrogen receptor-α concentrations. Mol Endocrinol 2006; 20: 291–301.

    Article  CAS  Google Scholar 

  42. Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M et al. Estrogen receptor alpha (ESR1) amplification is frequent in breast cancer. Nat Genet 2007; 39: 655–660.

    Article  CAS  Google Scholar 

  43. Li T, Sotgia F, Vuolo MA, Li M, Yang WC, Pestell RG et al. Caveolin-1 mutations in human breast cancer: functional association with estrogen-receptor alpha-positive status. Am J Pathol 2006; 168: 1998–2013.

    Article  CAS  Google Scholar 

  44. Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H . miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 2008; 68: 5004–5008.

    Article  CAS  Google Scholar 

  45. Blanco-Aparicio C, Pérez-Gallego L, Pequeño B, Leal JF, Renner O, Carnero A . Mice expressing myrAKT in the mammary gland develop carcinogen-induced ER-positive mammary tumors that mimic human breast cancer. Carcinogenesis 2007; 28: 584–594.

    Article  CAS  Google Scholar 

  46. Chen L, Qui J, Yang C, Yang X, Chen X, Jiang J et al. Identification of a novel estrogen receptor beta1 binding partner, inhibitor of differentiation-1, and role of ERbeta1 in human breast cancer cells. Cancer Lett 2009; 278: 210–219.

    Article  CAS  Google Scholar 

  47. Migliaccio A, Castoria G, Di Domenico M, De Falco A, Bilancio A, Auricchio F . Src is an initial target of sex steroid hormone action. Ann NY Acad Sci 2002; 963: 185–190.

    Article  CAS  Google Scholar 

  48. Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER . ERs associate with and recapitulate the production of caveolin: implications for signalling and cellular actions. Mol Endocrinol 2002; 16: 100–115.

    Article  CAS  Google Scholar 

  49. Moelling K, Schad K, Bosse M, Zimmermann S, Schwenker M . Regulation of Raf-Akt cross-talk. J Biol Chem 2002; 277: 31099–31106.

    Article  CAS  Google Scholar 

  50. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 2007; 129: 1065–1079.

    Article  CAS  Google Scholar 

  51. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8: 705–711.

    Article  CAS  Google Scholar 

  52. Boehm JS, Hession MT, Bulmer SE, Hahn WC . Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 2005; 25: 6468–6474.

    Article  Google Scholar 

  53. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W . Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Selma Huber and workers in the KIT rodent facility and Gitta Flaig for excellent technical assistance. We thank Robert Weinberg for kindly providing pBabe-neo; William Hahn for providing pBabe-Neo-Myr-Flag-AKT1 and pWZL Blast myc and Jean Zhao for pWZL Neo Myr Flag AKT3. pMIG Bcl-2 was created in the laboratory of Stanley Korsmeyer and was kindly provided from Dana Farber Cancer Institute. This study was supported by Deutsche Forschungsgemeinschaft grant TH1523/1-2 to ST and MAIFOR (ST and MS).

Author contributions: ST designed research; ST, AS and MS performed research, MS and AS contributed new reagents/analytic tools, ST analyzed data; ST and JPS wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Thaler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaler, S., Schmidt, M., Schad, A. et al. RASSF1A inhibits estrogen receptor alpha expression and estrogen-independent signalling: implications for breast cancer development. Oncogene 31, 4912–4922 (2012). https://doi.org/10.1038/onc.2011.658

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.658

Keywords

This article is cited by

Search

Quick links