Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression

Abstract

MicroRNAs (miRNAs) have an important role in a wide range of physiological and pathological processes, and their dysregulation has been reported to affect the development and progression of cancers, including hepatocellular carcinoma (HCC). However, in the plethora of dysregulated miRNAs, it is largely unknown which of them have a causative role in the hepatocarcinogenic process. In the present study, we first aimed to determine changes in the expression profile of miRNAs in human HCCs and to compare them with liver tumors generated in a rat model of chemically induced HCC. We found that members of the miR-100 family (miR-100, miR-99a) were downregulated in human HCCs; a similar downregulation was also observed in rat HCCs. Their reduction was paralleled by an increased expression of polo like kinase 1 (PLK1), a target of these miRNAs. The introduction of miR-100 in HCC cells impaired their growth ability and their capability to form colonies in soft agar. Next, we aimed at investigating, in the same animal model, if dysregulation of miR-100 and PLK1 is an early or late event along the multistep process of hepatocarcinogenesis. The obtained results showed that miR-100 downregulation (i) is already evident in very early preneoplastic lesions generated 9 weeks after carcinogenic treatment; (ii) is also observed in adenomas and early HCCs; and (iii) is not simply a marker of proliferating hepatocytes. To our knowledge, this is the first work unveiling the role of a miRNA family along HCC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andersen JB, Loi R, Perra A, Factor VM, Ledda-Columbano GM, Columbano A et al. (2010). Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology 51: 1401–1409.

    Article  Google Scholar 

  • Cairo S, Wang Y, de RA, Duroure K, Dahan J, Redon MJ et al. (2010). Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA 107: 20471–20476.

    Article  CAS  Google Scholar 

  • Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S et al. (2010). Ancient animal microRNAs and the evolution of tissue identity. Nature 463: 1084–1088.

    Article  CAS  Google Scholar 

  • De Petro G, Tavian D, Copeta A, Portolani N, Giulini SM, Barlati S . (1998). Expression of urokinase-type plasminogen activator (u-PA), u-PA receptor, and tissue-type PA messenger RNAs in human hepatocellular carcinoma. Cancer Res 58: 2234–2239.

    CAS  PubMed  Google Scholar 

  • Eckerdt F, Yuan J, Strebhardt K . (2005). Polo-like kinases and oncogenesis. Oncogene 24: 267–276.

    Article  CAS  Google Scholar 

  • Enomoto K, Farber E . (1982). Kinetics of phenotypic maturation of remodeling of hyperplastic nodules during liver carcinogenesis. Cancer Res 42: 2330–2335.

    CAS  PubMed  Google Scholar 

  • Fu L, Medico E . (2007). FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8: 3.

    Article  Google Scholar 

  • Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E, Gollin SM . (2009). Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 48: 569–582.

    Article  CAS  Google Scholar 

  • Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q et al. (2011). Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19: 232–243.

    Article  CAS  Google Scholar 

  • Imbeaud S, Ladeiro Y, Zucman-Rossi J . (2010). Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma. Semin Liver Dis 30: 75–86.

    Article  CAS  Google Scholar 

  • Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005–1017.

    Article  CAS  Google Scholar 

  • Ledda-Columbano GM, Curto M, Piga R, Zedda AI, Menegazzi M, Sartori C et al. (1998). In vivo hepatocyte proliferation is inducible through a TNF and IL-6-independent pathway. Oncogene 17: 1039–1044.

    Article  CAS  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120: 1046–1054.

    Article  CAS  Google Scholar 

  • Lee JS, Thorgeirsson SS . (2004). Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127: S51–S55.

    Article  CAS  Google Scholar 

  • Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A et al. (2009). Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 29: 265–269.

    Article  Google Scholar 

  • Liu W, Gong YH, Chao TF, Peng XZ, Yuan JG, Ma ZY et al. (2009). Identification of differentially expressed microRNAs by microarray: a possible role for microRNAs gene in medulloblastomas. Chin Med J (Engl) 122: 2405–2411.

    CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH et al. (2008). MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14: 2690–2695.

    Article  CAS  Google Scholar 

  • Oneyama C, Ikeda J, Okuzaki D, Suzuki K, Kanou T, Shintani Y et al. (2011). MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene 30: 3489–3501.

    Article  CAS  Google Scholar 

  • Parkin DM . (2001). Global cancer statistics in the year 2000. Lancet Oncol 2: 533–543.

    Article  CAS  Google Scholar 

  • Pellegrino R, Calvisi DF, Ladu S, Ehemann V, Staniscia T, Evert M et al. (2010). Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology 51: 857–868.

    CAS  PubMed  Google Scholar 

  • Satoh K, Kitahara A, Soma Y, Inaba Y, Hatayama I, Sato K . (1985). Purification, induction, and distribution of placental glutathione transferase: a new marker enzyme for preneoplastic cells in the rat chemical hepatocarcinogenesis. Proc Natl Acad Sci USA 82: 3964–3968.

    Article  CAS  Google Scholar 

  • Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E et al. (2010). Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer 126: 2036–2048.

    CAS  Google Scholar 

  • Smith MR, Wilson ML, Hamanaka R, Chase D, Kung H, Longo DL et al. (1997). Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234: 397–405.

    Article  CAS  Google Scholar 

  • Solt DB, Medline A, Farber E . (1977). Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am J Pathol 88: 595–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69: 1135–1142.

    Article  CAS  Google Scholar 

  • Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S et al. (2010). miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J 24: 3255–3263.

    Article  CAS  Google Scholar 

  • Thorgeirsson SS . (2011). The almighty MYC: orchestrating the micro-RNA universe to generate aggressive liver cancer. J Hepatol 55: 486–487.

    Article  Google Scholar 

  • Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S et al. (2010). Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11: 136–146.

    Article  CAS  Google Scholar 

  • Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP et al. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47: 1223–1232.

    Article  CAS  Google Scholar 

  • Wang FZ, Weber F, Croce C, Liu CG, Liao X, Pellett PE . (2008). Human cytomegalovirus infection alters expression of cellular microRNA species that affect its replication. J Virol 82: 9065–9074.

    Article  CAS  Google Scholar 

  • Wienholds E, Kloosterman WP, Miska E, varez-Saavedra E, Berezikov E, de BE et al. (2005). MicroRNA expression in zebrafish embryonic development. Science 309: 310–311.

    Article  CAS  Google Scholar 

  • Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI . (2008). Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14: 2588–2592.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L Tamagnone, S Corso, MM Angioni and our colleagues for helpful discussions; C Manca for the preparation of rat samples and C Isella for statistical analysis; L Palmas for technical assistance. Work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC grants to SG, AC), Regione Piemonte (grant to SG) and MIUR (grants to SG, AC, GMLC, GDP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Petrelli, A Columbano or S Giordano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrelli, A., Perra, A., Schernhuber, K. et al. Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene 31, 4517–4526 (2012). https://doi.org/10.1038/onc.2011.631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.631

Keywords

This article is cited by

Search

Quick links