Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p38α limits the contribution of MAP17 to cancer progression in breast tumors

Abstract

MAP17 is a small, 17-kDa, non-glycosylated membrane protein that is overexpressed in a percentage of carcinomas. In the present work, we have analyzed the role of MAP17 expression during mammary cancer progression. We have found that MAP17 is expressed in 60% human mammary tumors while it is not expressed in normal or benign neoplasias. MAP17 levels increased with breast tumor stage and were strongly correlated with mammary tumoral progression. A significant increase in the levels of reactive oxygen species (ROS) was observed in MAP17-expressing cells, as compared with parental cells. This increase was further paralleled by an increase in the tumorigenic capacity of carcinoma cells but not in immortal non-tumoral breast epithelial cells, which provides a selective advantage once tumorigenesis has begun. Expression of specific MAP17 shRNA in protein-expressing tumor cells reduced their tumorigenic capabilities, which suggests that this effect is dependent upon MAP17 protein expression. Our data show that ROS functions as a second messenger that enhances tumoral properties, which are inhibited in non-tumoral cells. We have found that p38α activation mediates this response. MAP17 triggers a ROS-dependent, senescence-like response that is abolished in the absence of p38a activation. Furthermore, in human breast tumors, MAP17 activation is correlated with a lack of phosphorylation of p38α. Therefore, MAP17 is overexpressed in late-stage breast tumors, in which oncogenic activity relies on p38 insensitivity to induce intracellular ROS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S et al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6: 109–116.

    Article  CAS  Google Scholar 

  • Allen RG, Tresini M . (2000). Oxidative stress and gene regulation. Free Radic Biol Med 28: 463–499.

    Article  CAS  Google Scholar 

  • Ames BN . (1983). Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221: 1256–1264.

    Article  CAS  Google Scholar 

  • Apel K, Hirt H . (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399.

    CAS  PubMed  Google Scholar 

  • Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA 98: 5550–5555.

    Article  CAS  Google Scholar 

  • Bae GU, Seo DW, Kwon HK, Lee HY, Hong S, Lee ZW et al. (1999). Hydrogen peroxide activates p70(S6k) signaling pathway. J Biol Chem 274: 32596–32602.

    Article  CAS  Google Scholar 

  • Barrett WC, DeGnore JP, Konig S, Fales HM, Keng YF, Zhang ZY et al. (1999). Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38: 6699–6705.

    Article  CAS  Google Scholar 

  • Behrend L, Henderson G, Zwacka RM . (2003). Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31: 1441–1444.

    Article  CAS  Google Scholar 

  • Blasco T, Aramayona JJ, Alcalde AI, Catalan J, Sarasa M, Sorribas V . (2003). Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes. Am J Physiol Renal Physiol 285: F799–F810.

    Article  CAS  Google Scholar 

  • Bulavin DV, Amundson SA, Fornace AJ . (2002). p38 and Chk1 kinases: different conductors for the G(2)/M checkpoint symphony. Curr Opin Genet Dev 12: 92–97.

    Article  CAS  Google Scholar 

  • Bulavin DV, Fornace Jr AJ . (2004). p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92: 95–118.

    Article  CAS  Google Scholar 

  • Burdon RH . (1996). Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24: 1028–1032.

    Article  CAS  Google Scholar 

  • Carnero A . (2010). The PKB/AKT pathway in cancer. Curr Pharm Des 16: 34–44.

    Article  CAS  Google Scholar 

  • Carnero A, Beach DH . (2004). Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23: 6006–6011.

    Article  CAS  Google Scholar 

  • Carnero A, Hudson JD, Hannon GJ, Beach DH . (2000). Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res 28: 2234–2241.

    Article  CAS  Google Scholar 

  • Cuadrado A, Nebreda AR . (2010). Mechanisms and functions of p38 MAPK signalling. Biochem J 429: 403–417.

    Article  CAS  Google Scholar 

  • Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS et al. (1993). Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90: 3113–3117.

    Article  CAS  Google Scholar 

  • Dimri G, Band H, Band V . (2005). Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res 7: 171–179.

    Article  CAS  Google Scholar 

  • Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . (2007). p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11: 191–205.

    Article  CAS  Google Scholar 

  • Dorion S, Lambert H, Landry J . (2002). Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem 277: 30792–30797.

    Article  CAS  Google Scholar 

  • Droge W . (2002). Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95.

    Article  CAS  Google Scholar 

  • England K, Cotter TG . (2005). Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 10: 237–245.

    Article  CAS  Google Scholar 

  • Fernandez-Pol JA, Hamilton PD, Klos DJ . (1982). Correlation between the loss of the transformed phenotype and an increase in superoxide dismutase activity in a revertant subclone of sarcoma virus-infected mammalian cells. Cancer Res 42: 609–617.

    CAS  PubMed  Google Scholar 

  • Guijarro MV, Castro ME, Romero L, Moneo V, Carnero A . (2007a). Large scale genetic screen identifies MAP17 as protein bypassing TNF-induced growth arrest. J Cell Biochem 101: 112–121.

    Article  CAS  Google Scholar 

  • Guijarro MV, Leal JF, Blanco-Aparicio C, Alonso S, Fominaya J, Lleonart M et al. (2007b). MAP17 enhances the malignant behavior of tumor cells through ROS increase. Carcinogenesis 28: 2096–2104.

    Article  CAS  Google Scholar 

  • Guijarro MV, Leal JF, Fominaya J, Blanco-Aparicio C, Alonso S, Lleonart M et al. (2007c). MAP17 overexpression is a common characteristic of carcinomas. Carcinogenesis 28: 1646–1652.

    Article  CAS  Google Scholar 

  • Guijarro MV, Link W, Rosado A, Leal JF, Carnero A . (2007d). MAP17 inhibits Myc-induced apoptosis through PI3K/AKT pathway activation. Carcinogenesis 28: 2443–2450.

    Article  CAS  Google Scholar 

  • Hancock JT, Desikan R, Neill SJ . (2001). Hydrogen peroxide and nitric oxide in plant defence: revealing potential targets for oxidative stress tolerance? Biofactors 15: 99–101.

    Article  CAS  Google Scholar 

  • Herbert BS, Wright WE, Shay JW . (2002). p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene 21: 7897–7900.

    Article  CAS  Google Scholar 

  • Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al. (2003). Gene expression predictors of breast cancer outcomes. Lancet 361: 1590–1596.

    Article  CAS  Google Scholar 

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER et al. (1997). Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649–1652.

    Article  CAS  Google Scholar 

  • Jaeger C, Schaefer BM, Wallich R, Kramer MD . (2000). The membrane-associated protein pKe#192/MAP17 in human keratinocytes. J Invest Dermatol 115: 375–380.

    Article  CAS  Google Scholar 

  • Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106 (Suppl 1): 289–295.

    Article  CAS  Google Scholar 

  • Kocher O, Cheresh P, Brown LF, Lee SW . (1995). Identification of a novel gene, selectively up-regulated in human carcinomas, using the differential display technique. Clin Cancer Res 1: 1209–1215.

    CAS  PubMed  Google Scholar 

  • Kocher O, Cheresh P, Lee SW . (1996). Identification and partial characterization of a novel membrane-associated protein (MAP17) up-regulated in human carcinomas and modulating cell replication and tumor growth. Am J Pathol 149: 493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanaspa MA, Giral H, Breusegem SY, Halaihel N, Baile G, Catalan J et al. (2007). Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi. Am J Physiol Renal Physiol 292: F230–F242.

    Article  CAS  Google Scholar 

  • Lee SR, Kwon KS, Kim SR, Rhee SG . (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366–15372.

    Article  CAS  Google Scholar 

  • Lewis CM, Herbert BS, Bu D, Halloway S, Beck A, Shadeo A et al. (2006). Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier. Breast Cancer Res Treat 99: 103–115.

    Article  CAS  Google Scholar 

  • Martindale JL, Holbrook NJ . (2002). Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1–15.

    Article  CAS  Google Scholar 

  • Matsukawa J, Matsuzawa A, Takeda K, Ichijo H . (2004). The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136: 261–265.

    Article  CAS  Google Scholar 

  • Nebreda AR, Porras A . (2000). p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25: 257–260.

    Article  CAS  Google Scholar 

  • Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V, Cook SJ et al. (2005). Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell 20: 673–685.

    Article  CAS  Google Scholar 

  • Pelicano H, Carney D, Huang P . (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7: 97–110.

    Article  CAS  Google Scholar 

  • Pribanic S, Gisler SM, Bacic D, Madjdpour C, Hernando N, Sorribas V et al. (2003). Interactions of MAP17 with the NaPi-IIa/PDZK1 protein complex in renal proximal tubular cells. Am J Physiol Renal Physiol 285: F784–F791.

    Article  CAS  Google Scholar 

  • Ruiz L, Traskine M, Ferrer I, Castro E, Leal JF, Kaufman M et al. (2008). Characterization of the p53 response to oncogene-induced senescence. PLoS ONE 3: e3230.

    Article  Google Scholar 

  • Samanta AK, Huang HJ, Le XF, Mao W, Lu KH, Bast Jr RC et al. (2009). MEKK3 expression correlates with nuclear factor kappa B activity and with expression of antiapoptotic genes in serous ovarian carcinoma. Cancer 115: 3897–3908.

    Article  CAS  Google Scholar 

  • Stampfer MR, Yaswen P . (2000). Culture models of human mammary epithelial cell transformation. J Mammary Gland Biol Neoplasia 5: 365–378.

    Article  CAS  Google Scholar 

  • Stampfer MR, Yaswen P . (2003). Human epithelial cell immortalization as a step in carcinogenesis. Cancer Lett 194: 199–208.

    Article  CAS  Google Scholar 

  • Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D et al. (1999). Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79–82.

    Article  CAS  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T . (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296–299.

    Article  CAS  Google Scholar 

  • Szatrowski TP, Nathan CF . (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794–798.

    CAS  Google Scholar 

  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K et al. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2: 222–228.

    Article  CAS  Google Scholar 

  • Toyokuni S, Okamoto K, Yodoi J, Hiai H . (1995). Persistent oxidative stress in cancer. FEBS Lett 358: 1–3.

    Article  CAS  Google Scholar 

  • Wagner EF, Nebreda AR . (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537–549.

    Article  CAS  Google Scholar 

  • Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S et al. (2002). Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22: 3389–3403.

    Article  Google Scholar 

  • Woo RA, Poon RY . (2004). Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev 18: 1317–1330.

    Article  CAS  Google Scholar 

  • Yan T, Oberley LW, Zhong W, St Clair DK . (1996). Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts. Cancer Res 56: 2864–2871.

    CAS  PubMed  Google Scholar 

  • Yoon SO, Yun CH, Chung AS . (2002). Dose effect of oxidative stress on signal transduction in aging. Mech Ageing Dev 123: 1597–1604.

    Article  CAS  Google Scholar 

  • Zuluaga S, Alvarez-Barrientos A, Gutierrez-Uzquiza A, Benito M, Nebreda AR, Porras A . (2007). Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell Signal 19: 62–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Augusto Silva and Ricardo Sanchez Prieto for their critical reading of the manuscript and valuable suggestions. This work was supported by grants from the Spanish Ministry of Science and Innovation and FEDER (SAF2009-08605), Consejeria de Ciencia e Innovacion and Consejeria de Salud of the Junta de Andalucia (CTS-6844 and PI-0142). AC's laboratory is also funded by a fellowship from the Fundacion Oncologica FERO, supported by Fundació Josep Botet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Carnero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guijarro, M., Vergel, M., Marin, J. et al. p38α limits the contribution of MAP17 to cancer progression in breast tumors. Oncogene 31, 4447–4459 (2012). https://doi.org/10.1038/onc.2011.619

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.619

Keywords

This article is cited by

Search

Quick links