Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A Notch1–neuregulin1 autocrine signaling loop contributes to melanoma growth

Abstract

The Notch pathway is an evolutionary conserved signaling cascade that has an essential role in melanoblast and melanocyte stem cell homeostasis. Notch signaling is emerging as a key player in melanoma, the most deadly form of skin cancer. In melanoma, Notch1 is inappropriately reactivated and contributes to melanoma tumorigenicity. Here, we propose a novel mechanism by which Notch1 promotes the disease. We found that Notch1 directly regulates the transcription of neuregulin1 (NRG1) by binding to its promoter region. NRG1 is the ligand for ERBB3 and 4, members of the epidermal growth factor family of receptors that are involved in the genesis and progression of a number of cancers. Notch1 and NRG1 expression are associated in melanoma and inhibition of NRG1 signaling leads to melanoma cell growth inhibition and tumor growth delay. Mechanistically, these effects are associated with the inhibition of the PI3Kinase/Akt signaling pathway and with the accumulation of p27Kip1. On the other end, addition of recombinant NRG1 can partially restore melanoma cell growth that is inhibited by Notch1 ablation. Taken together, our findings underline a new, previously undescribed autocrine signaling loop between Notch1 and NRG1 that controls melanoma growth and provide experimental evidence that the targeting of Notch and ERBB signaling may represent a novel potential therapeutic approach in melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Altekruse SF KC, Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J et al. SEER Cancer Statistics Review 1975. 20072010.

  2. Herzog C, Pappo A, Bondy M, Bleyer A, Kirkwood J . Cancer epidemiology in older adolescents and young adults. SEER AYA Monograph 2007; 53–63.

  3. Hardy KM, Kirschmann DA, Seftor EA, Margaryan NV, Postovit LM, Strizzi L et al. Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Res 2010; 70: 10340–10350.

    Article  CAS  Google Scholar 

  4. Zhou K, Huang L, Zhou Z, Hu C, Liu W, Zhou J et al. Wnt and Notch signaling pathways selectively regulating hematopoiesis. Ann Hematol 2010; 89: 749–757.

    Article  CAS  Google Scholar 

  5. Brabletz S, Schmalhofer O, Brabletz T . Gastrointestinal stem cells in development and cancer. J Pathol 2009; 217: 307–317.

    Article  CAS  Google Scholar 

  6. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R . Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 2010; 30: 3489–3498.

    Article  CAS  Google Scholar 

  7. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  Google Scholar 

  8. Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzalez A, Carbone DP et al. Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 2007; 67: 8051–8057.

    Article  CAS  Google Scholar 

  9. Pahlman S, Stockhausen MT, Fredlund E, Axelson H . Notch signaling in neuroblastoma. Semin Cancer Biol 2004; 14: 365–373.

    Article  CAS  Google Scholar 

  10. Rangarajan A, Syal R, Selvarajah S, Chakrabarti O, Sarin A, Krishna S . Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology 2001; 286: 23–30.

    Article  CAS  Google Scholar 

  11. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004; 64: 6854–6857.

    Article  CAS  Google Scholar 

  12. Sjolund J, Johansson M, Manna S, Norin C, Pietras A, Beckman S et al. Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest 2008; 118: 217–228.

    Article  Google Scholar 

  13. Gilbert CA, Daou MC, Moser RP, Ross AH . Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 2010; 70: 6870–6879.

    Article  CAS  Google Scholar 

  14. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 2010; 28: 1019–1029.

    Article  CAS  Google Scholar 

  15. Osawa M, Fisher DE . Notch and melanocytes: diverse outcomes from a single signal. J Invest Dermatol 2008; 128: 2571–2574.

    Article  CAS  Google Scholar 

  16. Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB . Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 2008; 118: 3660–3670.

    Article  CAS  Google Scholar 

  17. Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ et al. Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res 2009; 69: 5312–5320.

    Article  CAS  Google Scholar 

  18. Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 2006; 66: 4182–4190.

    Article  CAS  Google Scholar 

  19. Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I et al. Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 2005; 115: 3166–3176.

    Article  CAS  Google Scholar 

  20. Wieduwilt MJ, Moasser MM . The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 2008; 65: 1566–1584.

    Article  CAS  Google Scholar 

  21. Buac K, Xu M, Cronin J, Weeraratna AT, Hewitt SM, Pavan WJ . NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell Melanoma Res 2009; 22: 773–784.

    Article  CAS  Google Scholar 

  22. Reschke M, Mihic-Probst D, van der Horst EH, Knyazev P, Wild PJ, Hutterer M et al. HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res 2008; 14: 5188–5197.

    Article  CAS  Google Scholar 

  23. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich JR et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet 2009; 41: 1127–1132.

    Article  CAS  Google Scholar 

  24. Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 2009; 12: 839–847.

    Article  CAS  Google Scholar 

  25. Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 2009; 15: 2010–2021.

    Article  CAS  Google Scholar 

  26. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    Article  CAS  Google Scholar 

  27. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  Google Scholar 

  28. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005; 11: 7234–7242.

    Article  CAS  Google Scholar 

  29. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 2008; 1: 13.

    Article  Google Scholar 

  30. Johansson P, Pavey S, Hayward N . Confirmation of a BRAF mutation-associated gene expression signature in melanoma. Pigment Cell Res 2007; 20: 216–221.

    Article  CAS  Google Scholar 

  31. Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 2006; 19: 290–302.

    Article  CAS  Google Scholar 

  32. Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, Bennett DL . Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 2011; 59: 554–568.

    Article  Google Scholar 

  33. Ieguchi K, Fujita M, Ma Z, Davari P, Taniguchi Y, Sekiguchi K et al. Direct binding of the EGF-like domain of neuregulin-1 to integrins ({alpha}v{beta}3 and {alpha}6{beta}4) is involved in neuregulin-1/ErbB signaling. J Biol Chem 2010; 285: 31388–31398.

    Article  CAS  Google Scholar 

  34. Fukazawa R, Miller TA, Kuramochi Y, Frantz S, Kim YD, Marchionni MA et al. Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 2003; 35: 1473–1479.

    Article  CAS  Google Scholar 

  35. Liang J, Slingerland JM . Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003; 2: 339–345.

    Article  CAS  Google Scholar 

  36. Shin I, Rotty J, Wu FY, Arteaga CL . Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem 2005; 280: 6055–6063.

    Article  CAS  Google Scholar 

  37. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8: 1145–1152.

    Article  CAS  Google Scholar 

  38. Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 2009; 11: 420–432.

    Article  CAS  Google Scholar 

  39. Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W . Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 2009; 11: 397–408.

    Article  CAS  Google Scholar 

  40. Baselga J, Swain SM . Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9: 463–475.

    Article  CAS  Google Scholar 

  41. Chen X, Levkowitz G, Tzahar E, Karunagaran D, Lavi S, Ben-Baruch N et al. An immunological approach reveals biological differences between the two NDF/heregulin receptors, ErbB-3 and ErbB-4. J Biol Chem 1996; 271: 7620–7629.

    Article  CAS  Google Scholar 

  42. Rasul S, Balasubramanian R, Filipovic A, Slade MJ, Yague E, Coombes RC . Inhibition of gamma-secretase induces G2/M arrest and triggers apoptosis in breast cancer cells. Br J Cancer 2009; 100: 1879–1888.

    Article  CAS  Google Scholar 

  43. Pancewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann TA, Hermine O et al. Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1–associated adult T-cell leukemia. Proc Natl Acad Sci USA 2010; 107: 16619–16624.

    Article  CAS  Google Scholar 

  44. Birchmeier C . ErbB receptors and the development of the nervous system. Exp Cell Res 2009; 315: 611–618.

    Article  CAS  Google Scholar 

  45. Tworkoski K, Singhal G, Szpakowski S, Zito CI, Bacchiocchi A, Muthusamy V et al. Phospho-proteomic screen identifies potential therapeutic targets in melanoma. Mol Cancer Res 2011.

  46. Eliasz S, Liang S, Chen Y, De Marco MA, Machek O, Skucha S et al. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene 2010; 29: 2488–2498.

    Article  CAS  Google Scholar 

  47. Osipo C, Patel P, Rizzo P, Clementz AG, Hao L, Golde TE et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 2008; 27: 5019–5032.

    Article  CAS  Google Scholar 

  48. Dong Y, Li A, Wang J, Weber JD, Michel LS . Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res 2010; 70: 5465–5474.

    Article  CAS  Google Scholar 

  49. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 2005; 37: 1047–1054.

    Article  CAS  Google Scholar 

  50. Razorenova OV, Agapova LS, Budanov AV, Ivanov AV, Strunina SM, Chumakov PM . [Retroviral reporter systems for the assessment of activity of stress-induced signal transduction pathways controlled by p53, HIF-1 and HSF-1 transcription factors]. Mol Biol (Mosk) 2005; 39: 286–293.

    CAS  Google Scholar 

  51. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  Google Scholar 

  52. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  Google Scholar 

  53. Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 1997; 94: 861–866.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant # ACS-IRG-91-022 and Grant # ACS-RSG-11-139-01-DDC from the American Cancer Society and by start up funds awarded by the National Institute of Health (award number: P30CA147877: New Faculty Recruitment to Enhance Melanoma Research). We thank Drs Scott Welford and David Samols for critical discussion; Dr Marianne Broome Powell for making available many of the melanoma cell lines used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Bedogni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Wong, P., Zhang, L. et al. A Notch1–neuregulin1 autocrine signaling loop contributes to melanoma growth. Oncogene 31, 4609–4618 (2012). https://doi.org/10.1038/onc.2011.606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.606

Keywords

This article is cited by

Search

Quick links