Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription

Abstract

Linker histone H1.2 has been shown to suppress p53-dependent transcription through the modulation of chromatin remodeling; however, little is known about the mechanisms governing the antagonistic effects of H1.2 in DNA damage response. Here, we show that the repressive action of H1.2 on p53 function is negatively regulated via acetylation of p53 C-terminal regulatory domain and phosphorylation of H1.2 C-terminal tail. p53 acetylation by p300 impairs the interaction of p53 with H1.2 and triggers a rapid activation of p53-dependent transcription. Similarly, DNA-PK-mediated phosphorylation of H1.2 at T146 enhances p53 transcriptional activity by impeding H1.2 binding to p53 and thereby attenuating its suppressive effects on p53 transactivation. Consistent with these findings, point mutations mimicking modification states of H1.2 and p53 lead to a significant increase in p53-induced apoptosis. These data suggest that p53 acetylation–H1.2 phosphorylation cascade serves as a unique mechanism for triggering p53-dependent DNA damage response pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • An W, Kim J, Roeder RG . (2004). Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117: 735–748.

    Article  CAS  PubMed  Google Scholar 

  • Ausio J . (2006). Histone variants--the structure behind the function. Brief Funct Genomic Proteomic 5: 228–243.

    Article  CAS  PubMed  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254.

    CAS  PubMed  Google Scholar 

  • Beckerman R, Prives C . (2010). Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2: a000935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DT . (2003). Histone H1 and the dynamic regulation of chromatin function. Biochem Cell Biol 81: 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Bustin M, Catez F, Lim JH . (2005). The dynamics of histone H1 function in chromatin. Mol Cell 17: 617–620.

    Article  CAS  PubMed  Google Scholar 

  • Caterino TL, Hayes JJ . (2011). Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem Cell Biol 89: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras A, Hale TK, Stenoien DL, Rosen JM, Mancini MA, Herrera RE . (2003). The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol Cell Biol 23: 8626–8636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou Y, Mizzen CA, Abrams M, Allis CD, Gorovsky MA . (1999). Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol Cell 4: 641–647.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa JM, Verdun RE, Emerson BM . (2003). p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  • Georgel PT, Hansen JC . (2001). Linker histone function in chromatin: dual mechanisms of action. Biochem Cell Biol 79: 313–316.

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Hale TK, Contreras A, Morrison AJ, Herrera RE . (2006). Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha. Mol Cell 22: 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Happel N, Doenecke D . (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Horn PJ, Carruthers LM, Logie C, Hill DA, Solomon MJ, Wade PA et al. (2002). Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat Struct Biol 9: 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Izzo A, Kamieniarz K, Schneider R . (2008). The histone H1 family: specific members, specific functions? Biol Chem 389: 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Jaskelioff M, Gavin IM, Peterson CL, Logie C . (2000). SWI-SNF-mediated nucleosome remodeling: role of histone octamer mobility in the persistence of the remodeled state. Mol Cell Biol 20: 3058–3068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, Evan GI . (2009). p53--a Jack of all trades but master of none. Nat Rev Cancer 9: 821–829.

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Choi J, Heo K, Kim H, Levens D, Kohno K et al. (2008). Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J Biol Chem 283: 9113–9126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Habas R, Abate-Shen C . (2004). MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304: 1675–1678.

    Article  CAS  PubMed  Google Scholar 

  • Lennox RW, Cohen LH . (1984). The H1 Subtypes of Mammals: Metabolic Characteristics and Tissue Distribution. John Wiley & Sons: New York.

    Google Scholar 

  • Lever MA, Th'ng JP, Sun X, Hendzel MJ . (2000). Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408: 873–876.

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W . (2004). Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101: 2259–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Lieber MR . (2006). In vitro nonhomologous DNA end joining system. Methods Enzymol 408: 502–510.

    Article  CAS  PubMed  Google Scholar 

  • McBryant SJ, Lu X, Hansen JC . (2010). Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 20: 519–528.

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand S . et al. (2004). Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13: 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Ni JQ, Liu LP, Hess D, Rietdorf J, Sun FL . (2006). Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev 20: 1959–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parseghian MH, Hamkalo BA . (2001). A compendium of the histone H1 family of somatic subtypes: an elusive cast of characters and their characteristics. Biochem Cell Biol 79: 289–304.

    Article  CAS  PubMed  Google Scholar 

  • Roth SY, Allis CD . (1992). Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem Sci 17: 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D . (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16: 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Vila R, Ponte I, Jimenez MA, Rico M, Suau P . (2000). A helix-turn motif in the C-terminal domain of histone H1. Protein Sci 9: 627–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y . (2006). Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14: 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, John S, Pesavento JJ, Schultz-Norton JR, Schiltz RL, Baek S et al. (2010). Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J Cell Biol 189: 407–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Michael Lieber for DNA-PK and Daniela Rhodes for p601-7. This research was supported by NIH-R01GM84209 (WA), ACS RSG DMC-1005001 (WA) and NIH-RO1DK04393 (MRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W An.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Jeong, K., Kim, H. et al. Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription. Oncogene 31, 4290–4301 (2012). https://doi.org/10.1038/onc.2011.605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.605

Keywords

This article is cited by

Search

Quick links