Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression

Abstract

Once stimulated, the epidermal growth factor receptor (EGFR) undergoes self-phosphorylation, which, on the one hand, instigates signaling cascades, and on the other hand, recruits CBL ubiquitin ligases, which mark EGFRs for degradation. Using RNA interference screens, we identified a deubiquitinating enzyme, Cezanne-1, that opposes receptor degradation and enhances EGFR signaling. These functions require the catalytic- and ubiquitin-binding domains of Cezanne-1, and they involve physical interactions and transphosphorylation of Cezanne-1 by EGFR. In line with the ability of Cezanne-1 to augment EGF-induced growth and migration signals, the enzyme is overexpressed in breast cancer. Congruently, the corresponding gene is amplified in approximately one third of mammary tumors, and high transcript levels predict an aggressive disease course. In conclusion, deubiquitination by Cezanne-1 curtails degradation of growth factor receptors, thereby promotes oncogenic growth signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Avraham R, Yarden Y . Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 2010; 12: 104–117.

    Article  Google Scholar 

  2. Sorkin A, von Zastrow M . Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009; 10: 609–622.

    Article  CAS  Google Scholar 

  3. Goh LK, Huang F, Kim W, Gygi S, Sorkin A . Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 2010; 189: 871–883.

    Article  CAS  Google Scholar 

  4. Fehrenbacher N, Bar-Sagi D, Philips M . Ras/MAPK signaling from endomembranes. Mol Oncol 2009; 3: 297–307.

    Article  CAS  Google Scholar 

  5. Vieira AV, Lamaze C, Schmid SL . Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996; 274: 2086–2089.

    Article  CAS  Google Scholar 

  6. Frosi Y, Anastasi S, Ballaro C, Varsano G, Castellani L, Maspero E et al. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol 2010; 189: 557–571.

    Article  CAS  Google Scholar 

  7. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A . Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 2006; 21: 737–748.

    Article  CAS  Google Scholar 

  8. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4: 1029–1040.

    Article  CAS  Google Scholar 

  9. Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 2003; 278: 21323–21326.

    Article  CAS  Google Scholar 

  10. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I . Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 2003; 5: 461–466.

    Article  CAS  Google Scholar 

  11. Katzmann DJ, Odorizzi G, Emr SD . Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 2002; 3: 893–905.

    Article  CAS  Google Scholar 

  12. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 2002; 416: 451–455.

    Article  CAS  Google Scholar 

  13. Katz M, Shtiegman K, Tal-Or P, Yakir L, Mosesson Y, Harari D et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 2002; 3: 740–751.

    Article  CAS  Google Scholar 

  14. Sacco JJ, Coulson JM, Clague MJ, Urbe S . Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 2010; 62: 140–157.

    CAS  PubMed  Google Scholar 

  15. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem 2006; 281: 5094–5105.

    Article  CAS  Google Scholar 

  16. McCullough J, Clague MJ, Urbe S . AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 2004; 166: 487–492.

    Article  CAS  Google Scholar 

  17. Nakamura M, Tanaka N, Kitamura N, Komada M . Clathrin anchors deubiquitinating enzymes, AMSH and AMSH-like protein, on early endosomes. Genes Cells 2006; 11: 593–606.

    Article  CAS  Google Scholar 

  18. Ma YM, Boucrot E, Villen J, Affar el B, Gygi SP, Gottlinger HG et al. Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation. J Biol Chem 2007; 282: 9805–9812.

    Article  CAS  Google Scholar 

  19. Row PE, Prior IA, McCullough J, Clague MJ, Urbe S . The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 2006; 281: 12618–12624.

    Article  CAS  Google Scholar 

  20. Duex JE, Sorkin A . RNA interference screen identifies Usp18 as a regulator of epidermal growth factor receptor synthesis. Mol Biol Cell 2009; 20: 1833–1844.

    Article  CAS  Google Scholar 

  21. Enesa K, Zakkar M, Chaudhury H, Luong le A, Rawlinson L, Mason JC et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283: 7036–7045.

    Article  CAS  Google Scholar 

  22. Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003; 278: 23180–23186.

    Article  CAS  Google Scholar 

  23. Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 2006; 13: 264–271.

    Article  CAS  Google Scholar 

  24. Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 2006; 124: 1183–1195.

    Article  CAS  Google Scholar 

  25. Crosetto N, Bienko M, Hibbert RG, Perica T, Ambrogio C, Kensche T et al. Human Wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J Biol Chem 2008; 283: 35173–35185.

    Article  CAS  Google Scholar 

  26. Dikic I, Wakatsuki S, Walters KJ . Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009; 10: 659–671.

    Article  CAS  Google Scholar 

  27. Magnifico A, Ettenberg S, Yang C, Mariano J, Tiwari S, Fang S et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J Biol Chem 2003; 278: 43169–43177.

    Article  CAS  Google Scholar 

  28. Courbard JR, Fiore F, Adelaide J, Borg JP, Birnbaum D, Ollendorff V . Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J Biol Chem 2002; 277: 45267–45275.

    Article  CAS  Google Scholar 

  29. Sowa ME, Bennett EJ, Gygi SP, Harper JW . Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138: 389–403.

    Article  CAS  Google Scholar 

  30. Courjal F, Theillet C . Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res 1997; 57: 4368–4377.

    CAS  PubMed  Google Scholar 

  31. Hawthorn L, Luce J, Stein L, Rothschild J . Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast. BMC Cancer 2010; 10: 460.

    Article  Google Scholar 

  32. Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Rouge C et al. Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q. Br J Cancer 2006; 95: 1439–1447.

    Article  CAS  Google Scholar 

  33. Tarcic G, Boguslavsky SK, Wakim J, Kiuchi T, Liu A, Reinitz F et al. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol 2009; 19: 1788–1798.

    Article  CAS  Google Scholar 

  34. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430: 694–699.

    Article  CAS  Google Scholar 

  35. Mills GB, Jurisica I, Yarden Y, Norman JC . Genomic amplicons target vesicle recycling in breast cancer. J Clin Invest 2009; 119: 2123–2127.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Liu X, Datta A, Govindarajan K, Tam WL, Han J et al. RCP is a human breast cancer-promoting gene with Ras-activating function. J Clin Invest 2009; 119: 2171–2183.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hou Q, Wu YH, Grabsch H, Zhu Y, Leong SH, Ganesan K et al. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res 2008; 68: 4623–4630.

    Article  CAS  Google Scholar 

  38. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 2004; 10: 1251–1256.

    Article  CAS  Google Scholar 

  39. Palmieri D, Bouadis A, Ronchetti R, Merino MJ, Steeg PS . Rab11a differentially modulates epidermal growth factor-induced proliferation and motility in immortal breast cells. Breast Cancer Res Treat 2006; 100: 127–137.

    Article  CAS  Google Scholar 

  40. Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC . Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 2008; 183: 143–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Tissue Bank of the National Center for Tumor Diseases, Heidelberg University Hospital (Heidelberg, Germany). Our research is supported by grants from the National Cancer Institute (5R37CA072981, CCSG and P30 CA16672), the European Commission, the German-Israeli Project Cooperation, the Israel Cancer Research Fund, the Dr Miriam and Sheldon G Adelson Medical Research Foundation and the MD Moross Institute for Cancer Research. YY is the incumbent of the Harold and Zelda Goldenberg Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yarden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pareja, F., Ferraro, D., Rubin, C. et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 31, 4599–4608 (2012). https://doi.org/10.1038/onc.2011.587

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.587

Keywords

This article is cited by

Search

Quick links