Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition

Abstract

It is necessary to understand mechanisms by which differentiating agents influence tumor-initiating cancer stem cells. Toward this end, we investigated the cellular and molecular responses of glioblastoma stem-like cells (GBM-SCs) to all-trans retinoic acid (RA). GBM-SCs were grown as non-adherent neurospheres in growth factor supplemented serum-free medium. RA treatment rapidly induced morphology changes, induced growth arrest at G1/G0 to S transition, decreased cyclin D1 expression and increased p27 expression. Immunofluorescence and western blot analysis indicated that RA induced the expression of lineage-specific differentiation markers Tuj1 and GFAP and reduced the expression of neural stem cell markers such as CD133, Msi-1, nestin and Sox-2. RA treatment dramatically decreased neurosphere-forming capacity, inhibited the ability of neurospheres to form colonies in soft agar and inhibited their capacity to propagate subcutaneous and intracranial xenografts. Expression microarray analysis identified 350 genes that were altered within 48 h of RA treatment. Affected pathways included retinoid signaling and metabolism, cell-cycle regulation, lineage determination, cell adhesion, cell–matrix interaction and cytoskeleton remodeling. Notch signaling was the most prominent of these RA-responsive pathways. Notch pathway downregulation was confirmed based on the downregulation of HES and HEY family members. Constitutive activation of Notch signaling with the Notch intracellular domain rescued GBM neurospheres from the RA-induced differentiation and stem cell depletion. Our findings identify mechanisms by which RA targets GBM-derived stem-like tumor-initiating cells and novel targets applicable to differentiation therapies for glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  • Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF . (2004). Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14: 43–47.

    Article  CAS  Google Scholar 

  • An J, Yuan Q, Wang C, Liu L, Tang K, Tian HY et al. (2005). Differential display of proteins involved in the neural differentiation of mouse embryonic carcinoma P19 cells by comparative proteomic analysis. Proteomics 5: 1656–1668.

    Article  Google Scholar 

  • Bain G, Mansergh FC, Wride MA, Hance JE, Isogawa A, Rancourt SL et al. (2000). ES cell neural differentiation reveals a substantial number of novel ESTs. Funct Integr Genomics 1: 127–139.

    Article  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    Article  CAS  Google Scholar 

  • Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25: 2524–2533.

    Article  CAS  Google Scholar 

  • Butowski N, Prados MD, Lamborn KR, Larson DA, Sneed PK, Wara WM et al. (2005). A phase II study of concurrent temozolomide and cis-retinoic acid with radiation for adult patients with newly diagnosed supratentorial glioblastoma. Int J Radiat Oncol Biol Phys 61: 1454–1459.

    Article  CAS  Google Scholar 

  • Chalmers AJ . (2007). Radioresistant glioma stem cells—therapeutic obstacle or promising target? DNA Repair (Amst) 6: 1391–1394.

    Article  CAS  Google Scholar 

  • Chearwae W, Bright JJ . (2008). PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer 99: 2044–2053.

    Article  CAS  Google Scholar 

  • Das A, Banik NL, Ray SK . (2008). Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J Neurooncol 87: 9–22.

    Article  CAS  Google Scholar 

  • Dragnev KH, Petty WJ, Dmitrovsky E . (2003). Retinoid targets in cancer therapy and chemoprevention. Cancer Biol Ther 2: S150–S156.

    Article  CAS  Google Scholar 

  • Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N et al. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28: 5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–7021.

    Article  CAS  Google Scholar 

  • Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F et al. (2009). Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8: 3297–3302.

    Article  CAS  Google Scholar 

  • Goodwin CR, Lal B, Zhou X, Ho S, Xia S, Taeger A et al. (2010). Cyr61 mediates hepatocyte growth factor-dependent tumor cell growth, migration, and Akt activation. Cancer Res 70: 2932–2941.

    Article  CAS  Google Scholar 

  • Harris TM, Childs G . (2002). Global gene expression patterns during differentiation of F9 embryonal carcinoma cells into parietal endoderm. Funct Integr Genomics 2: 105–119.

    Article  CAS  Google Scholar 

  • Jaeckle KA, Hess KR, Yung WK, Greenberg H, Fine H, Schiff D et al. (2003). Phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and progressive malignant glioma: a North American Brain Tumor Consortium study. J Clin Oncol 21: 2305–2311.

    Article  CAS  Google Scholar 

  • Johannessen TC, Bjerkvig R, Tysnes BB . (2008). DNA repair and cancer stem-like cells—potential partners in glioma drug resistance? Cancer Treat Rev 34: 558–567.

    Article  CAS  Google Scholar 

  • Jurcic JG, Soignet SL, Maslak AP . (2007). Diagnosis and treatment of acute promyelocytic leukemia. Curr Oncol Rep 9: 337–344.

    Article  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I . (2009). Dynamic regulation of Notch signaling in neural progenitor cells. Curr Opin Cell Biol 21: 733–740.

    Article  CAS  Google Scholar 

  • Karmakar S, Banik NL, Ray SK . (2008). Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice. Cancer 112: 596–607.

    Article  CAS  Google Scholar 

  • Kumar HR, Zhong X, Sandoval JA, Hickey RJ, Malkas LH . (2008). Applications of emerging molecular technologies in glioblastoma multiforme. Expert Rev Neurother 8: 1497–1506.

    Article  Google Scholar 

  • Lal B, Xia S, Abounader R, Laterra J . (2005). Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res 11: 4479–4486.

    Article  CAS  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403.

    Article  CAS  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P . (2006). Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46: 451–480.

    Article  CAS  Google Scholar 

  • Massard C, Deutsch E, Soria JC . (2006). Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17: 1620–1624.

    Article  CAS  Google Scholar 

  • Mongan NP, Gudas LJ . (2007). Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation 75: 853–870.

    Article  CAS  Google Scholar 

  • Murata-Ohsawa M, Tohda S, Kogoshi H, Sakano S, Nara N . (2005). The Notch ligand, Delta-1, alters retinoic acid (RA)-induced neutrophilic differentiation into monocytic and reduces RA-induced apoptosis in NB4 cells. Leuk Res 29: 197–203.

    Article  CAS  Google Scholar 

  • Nasr R, Lallemand-Breitenbach V, Zhu J, Guillemin MC, de The H . (2009). Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res 15: 6321–6326.

    Article  CAS  Google Scholar 

  • Niles RM . (2004). Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat Res 555: 81–96.

    Article  CAS  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

    Article  CAS  Google Scholar 

  • Piccirillo SG, Vescovi AL . (2007). Brain tumour stem cells: possibilities of new therapeutic strategies. Expert Opin Biol Ther 7: 1129–1135.

    Article  CAS  Google Scholar 

  • Ray J, Gage FH . (2006). Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol Cell Neurosci 31: 560–573.

    Article  CAS  Google Scholar 

  • Reznik TE, Sang Y, Ma Y, Abounader R, Rosen EM, Xia S et al. (2008). Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor. Mol Cancer Res 6: 139–150.

    Article  CAS  Google Scholar 

  • Sangster-Guity N, Yu LM, McCormick P . (2004). Molecular profiling of embryonal carcinoma cells following retinoic acid or histone deacetylase inhibitor treatment. Cancer Biol Ther 3: 1109–1120.

    Article  CAS  Google Scholar 

  • See SJ, Levin VA, Yung WK, Hess KR, Groves MD . (2004). 13-cis-retinoic acid in the treatment of recurrent glioblastoma multiforme. Neuro Oncol 6: 253–258.

    Article  CAS  Google Scholar 

  • Sell S . (2004). Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51: 1–28.

    Article  Google Scholar 

  • Sell S . (2006). Cancer stem cells and differentiation therapy. Tumour Biol 27: 59–70.

    Article  Google Scholar 

  • Shi Y, Sun G, Zhao C, Stewart R . (2008). Neural stem cell self-renewal. Crit Rev Oncol Hematol 65: 43–53.

    Article  Google Scholar 

  • Shih AH, Holland EC . (2006). Notch signaling enhances nestin expression in gliomas. Neoplasia 8: 1072–1082.

    Article  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  Google Scholar 

  • Sivasankaran B, Degen M, Ghaffari A, Hegi ME, Hamou MF, Ionescu MC et al. (2009). Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res 69: 458–465.

    Article  CAS  Google Scholar 

  • Soprano DR, Teets BW, Soprano KJ . (2007). Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. Vitam Horm 75: 69–95.

    Article  CAS  Google Scholar 

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466.

    Article  CAS  Google Scholar 

  • Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J et al. (2009). DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27: 1473–1486.

    Article  CAS  Google Scholar 

  • Tang XH, Gudas LJ . (2011). Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6: 345–364.

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J . (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354.

    Article  CAS  Google Scholar 

  • Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E et al. (1999). Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156: 71–83.

    Article  CAS  Google Scholar 

  • Walsh J, Andrews PW . (2003). Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS 111: 197–210; discussion 210–191.

    Article  CAS  Google Scholar 

  • Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR et al. (2010). Notch promotes radioresistance of glioma stem cells. Stem Cells 28: 17–28.

    Article  CAS  Google Scholar 

  • Wei Y, Harris T, Childs G . (2002). Global gene expression patterns during neural differentiation of P19 embryonic carcinoma cells. Differentiation 70: 204–219.

    Article  CAS  Google Scholar 

  • Wilson A, Radtke F . (2006). Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580: 2860–2868.

    Article  CAS  Google Scholar 

  • Yu X, Zou J, Ye Z, Hammond H, Chen G, Tokunaga A et al. (2008). Notch signaling activation in human embryonic stem cells is required for embryonic, but not trophoblastic, lineage commitment. Cell Stem Cell 2: 461–471.

    Article  CAS  Google Scholar 

  • Yung WK, Kyritsis AP, Gleason MJ, Levin VA . (1996). Treatment of recurrent malignant gliomas with high-dose 13-cis-retinoic acid. Clin Cancer Res 2: 1931–1935.

    CAS  PubMed  Google Scholar 

  • Zhang R, Banik NL, Ray SK . (2007). Combination of all-trans retinoic acid and interferon-gamma suppressed PI3K/Akt survival pathway in glioblastoma T98G cells whereas NF-kappaB survival signaling in glioblastoma U87MG cells for induction of apoptosis. Neurochem Res 32: 2194–2202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Maryland Stem Cell Research Fund (MSCRFE) 2009-0126-00 (SX); MSCRF (MY, HG); NIH NS43987 and the James McDonnell Foundation (JL); as well as NIH KO8 and HHMI grants (AQ). Dr CR Goodwin is a UNCF-Merck Science postdoc fellow. We thank Dr Jiang Qian and Ms Yanqing Yang from Wilmer Eye Institute, Johns Hopkins University, for their assistance with microarray analysis.

Author contributions: MY and SW: collection and assembly of data, data analysis and interpretation, final approval; YS, PS, BL and CRG: collection and assembly of data, final approval; HG, AQ and AV: provision of study materials, final approval; JL: conception and design, financial support, administrative support, data analysis and interpretation, manuscript writing, final approval. SX: conception and design, financial support, administrative support, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Xia.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, M., Wang, S., Sang, Y. et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 30, 3454–3467 (2011). https://doi.org/10.1038/onc.2011.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.58

Keywords

This article is cited by

Search

Quick links