Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways

Abstract

We report that elevated microRNA-133b (miR-133b) acts as an oncogene in human cervical carcinoma to promote tumorigenesis and metastasis. In situ hybridization confirmed that miR-133b is localized in proliferating human cervical carcinoma cells with levels progressively elevating throughout advancing stages. Cellular studies showed that miR-133b enhances cell proliferation and colony formation by targeting mammalian sterile 20-like kinase 2 (MST2), cell division control protein 42 homolog (CDC42) and ras homolog gene family member A (RHOA), which subsequently results in activation of the tumorigenic protein kinase B alpha (AKT1) and mitogen-activated protein kinase (ERK1 and ERK2, here abbreviated as ERK) signaling pathways. Mouse experiments revealed that upregulation of miR-133b in cervical carcinoma cells strongly promotes both in vivo tumorigenesis and independent metastasis to the mouse lung. The data indicates that upregulation of miR-133b shortens the latency of cervical carcinoma. Together, these findings suggest that miR-133b could be a potent marker for the early onset of cervical carcinoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L . (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63: 1684–1695.

    CAS  Google Scholar 

  • Bertelsen BI, Steine SJ, Sandvei R, Molven A, Laerum OD . (2006). Molecular analysis of the PI3K-AKT pathway in uterine cervical neoplasia: frequent PIK3CA amplification and AKT phosphorylation. Int J Cancer 118: 1877–1883.

    Article  CAS  Google Scholar 

  • Burk RD . (1999). Pernicious papillomavirus infection. N Engl J Med 341: 1687–1688.

    Article  CAS  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13: 613–618.

    Article  CAS  Google Scholar 

  • Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH . (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24: 2076–2086.

    Article  CAS  Google Scholar 

  • Cifone MA, Fidler IJ . (1980). Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77: 1039–1043.

    Article  CAS  Google Scholar 

  • Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM, Pavlova N et al. (2007). The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 26: 4523–4534.

    Article  CAS  Google Scholar 

  • Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB et al. (2009). MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun 388: 483–489.

    Article  CAS  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W . (2007). MAP kinase signalling pathways in cancer. Oncogene 26: 3279–3290.

    Article  CAS  Google Scholar 

  • Garzon R, Calin GA, Croce CM . (2009). MicroRNAs in Cancer. Annu Rev Med 60: 167–179.

    Article  CAS  Google Scholar 

  • Good M, Lavin M, Chen P, Kidson C . (1978). Dependence on cloning method of survival of human melanoma cells after ultraviolet and ionizing radiation. Cancer Res 38: 4671–4675.

    CAS  PubMed  Google Scholar 

  • Guo H, Liu H, Mitchelson K, Rao H, Luo M, Xie L et al. (2011). MicroRNAs-372/373 promote the expression of hepatitis B Virus through the targeting of nuclear factor I/B. Hepatology 54: 808–819.

    Article  CAS  Google Scholar 

  • Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X et al. (2008). Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68: 26–33.

    Article  CAS  Google Scholar 

  • He L, Hannon GJ . (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522–531.

    Article  CAS  Google Scholar 

  • Hu G, Chen D, Li X, Yang K, Wang H, Wu W . (2010). MiR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 10: 190–197.

    Article  Google Scholar 

  • Kahn JA . (2009). HPV vaccination for the prevention of cervical intraepithelial neoplasia. N Engl J Med 361: 271–278.

    Article  CAS  Google Scholar 

  • Kohrenhagen N, Voelker HU, Schmidt M, Kapp M, Krockenberger M, Frambach T et al. (2008). Expression of transketolase-like 1 (TKTL1) and p-Akt correlates with the progression of cervical neoplasia. J Obstet Gynaecol Res 34: 293–300.

    Article  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    Article  CAS  Google Scholar 

  • Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY et al. (2008). Altered microRNA expression in cervical carcinomas. Clin Cancer Res 14: 2535–2542.

    Article  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  Google Scholar 

  • Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y et al. (2005). Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7: 399–404.

    Article  CAS  Google Scholar 

  • Liu X, Chen Z, Yu J, Xia J, Zhou X . (2009). MicroRNA profiling and head and neck cancer. Comp Funct Genomics: 2009: 837514.

  • Mendell JT . (2008). MiRiad roles for the miR-17-92 cluster in development and disease. Cell 133: 217–222.

    Article  CAS  Google Scholar 

  • Mumby M . (2007). PP2A: unveiling a reluctant tumor suppressor. Cell 130: 21–24.

    Article  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  Google Scholar 

  • Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF . (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103: 8721–8726.

    Article  CAS  Google Scholar 

  • Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B . (1994). HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 45: 48–57.

    Article  CAS  Google Scholar 

  • Schiffman M, Castle PE . (2005). The promise of global cervical-cancer prevention. N Engl J Med 353: 2101–2104.

    Article  CAS  Google Scholar 

  • Shibue T, Weinberg RA . (2009). Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106: 10290–10295.

    Article  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  Google Scholar 

  • Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L et al. (2010). Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 107: 1431–1436.

    Article  CAS  Google Scholar 

  • Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C et al. (2011). A five-microRNA signature for squamous cell lung carcinoma (SCC) diagnosis and hsa-miR-31 for SCC prognosis. Clin Cancer Res 17: 6802–6811.

    Article  CAS  Google Scholar 

  • Testa JR, Bellacosa A . (2001). AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98: 10983–10985.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP et al. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47: 1223–1232.

    Article  CAS  Google Scholar 

  • Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C et al. (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3: e2557.

    Article  Google Scholar 

  • Watanabe T, Takeda A, Mise K, Okuno T, Suzuki T, Minami N et al. (2005). Stage-specific expression of microRNAs during Xenopus development. FEBS Lett 579: 318–324.

    Article  CAS  Google Scholar 

  • Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W . (2008). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123: 251–257.

    Article  CAS  Google Scholar 

  • zur Hausen H . (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Youyong Lu and Yun Zhang for discussions and comments on the manuscript; Suqiong Wang, Zhaoli Chen and Dapeng Ding for help with mouse experiments; Jiantao Cui and Dr Bing Dong for help with IHC and ISH experiments. This study was supported by the National High-tech Program of China (grant no. 2006AA020701 and grant no. 2009AA022701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Wen or J Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, W., Dong, P., Ma, C. et al. MicroRNA-133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways. Oncogene 31, 4067–4075 (2012). https://doi.org/10.1038/onc.2011.561

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.561

Keywords

This article is cited by

Search

Quick links