Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer

Abstract

A clearer definition of the molecular determinants that drive the development and progression of prostate cancer (PCa) is urgently needed. Efforts to map recurrent somatic deletions in the tumor genome, especially homozygous deletions (HODs), have provided important positional information in the search for cancer-causing genes. Analyzing HODs in the tumors of 244 patients from two independent cohorts and 22 PCa xenografts using high-resolution single-nucleotide polymorphism arrays, herein we report the identification of CHD1, a chromatin remodeler, as one of the most frequently homozygously deleted genes in PCa, second only to PTEN in this regard. The HODs observed in CHD1, including deletions affecting only internal exons of CHD1, were found to completely extinguish the expression of mRNA of this gene in PCa xenografts. Loss of this chromatin remodeler in clinical specimens is significantly associated with an increased number of additional chromosomal deletions, both hemi- and homozygous, especially on 2q, 5q and 6q. Together with the deletions observed in HEK293 cells stably transfected with CHD1 small hairpin RNA, these data suggest a causal relationship. Downregulation of Chd1 in mouse prostate epithelial cells caused dramatic morphological changes indicative of increased invasiveness, but did not result in transformation. Indicating a new role of CHD1, these findings collectively suggest that distinct CHD1-associated alterations of genomic structure evolve during and are required for the development of PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. (2011). Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469: 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Avvakumov N, Nourani A, Côté J . (2011). Histone chaperones: modulators of chromatin marks. Mol Cell 41: 502–514.

    Article  CAS  PubMed  Google Scholar 

  • Barclay WW, Axanova LS, Chen W, Romero L, Maund SL, Soker S et al. (2008). Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation. Stem Cells 26: 600–610.

    Article  CAS  PubMed  Google Scholar 

  • Barclay WW, Cramer SD . (2005). Culture of mouse prostatic epithelial cells from genetically engineered mice. Prostate 63: 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY et al. (2011). The genomic complexity of primary human prostate cancer. Nature 470: 214–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D et al. (2007). Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104: 20007–20012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. (2010). The landscape of somatic copy-number alteration across human cancers. Nature 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F et al. (2010). TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 17: 481–496.

    Article  CAS  PubMed  Google Scholar 

  • Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al. (2010). Signatures of mutation and selection in the cancer genome. Nature 463: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J et al. (2010). MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9: 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al. (2009). Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cengiz B, Gunduz M, Nagatsuka H, Beder L, Gunduz E, Tamamura R et al. (2007). Fine deletion mapping of chromosome 2q21-37 shows three preferentially deleted regions in oral cancer. Oral Oncol 43: 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463: 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Wan M, Cao P, Rao A, Cramer SD, Sui G . (2009). Yin Yang 1 regulates the transcriptional activity of androgen receptor. Oncogene 28: 3746–3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Wan M, Sui G . (2007). PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 27: 3780–3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J et al. (2011). SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 466: 869–873.

    Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A et al. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460: 863–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R et al. (2010). Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. (2010). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466: 869–873.

    Article  CAS  PubMed  Google Scholar 

  • King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al. (2009). Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41: 524–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno T, Otsuka A, Girard L, Sato M, Iwakawa R, Ogiwara H et al. (2010). A catalog of genes homozygously deleted in human lung cancer and the candidacy of PTPRD as a tumor suppressor gene. Genes Chromosomes Cancer 49: 342–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV et al. (2007). CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317: 1087–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Chang BL, Cramer S, Koty PP, Li T, Sun J et al. (2007). Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clin Cancer Res 13: 5028–5033.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G et al. (2009). Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15: 559–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YJ, Wu CS, Li HP, Liu HP, Lu CY, Leu YW et al. (2010). Aberrant methylation impairs low density lipoprotein receptor-related protein 1B tumor suppressor function in gastric cancer. Genes Chromosomes Cancer 49: 412–424.

    CAS  PubMed  Google Scholar 

  • McDaniel IE, Lee JM, Berger MS, Hanagami CK, Armstrong JA . (2008). Investigations of CHD1 function in transcription and development of Drosophila melanogaster. Genetics 178: 583–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J et al. (2008). Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29: 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Nancarrow DJ, Handoko HY, Smithers BM, Gotley DC, Drew PA, Watson DI et al. (2008). Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res 68: 4163–4172.

    Article  CAS  PubMed  Google Scholar 

  • Rahrmann EP, Collier LS, Knutson TP, Doyal ME, Kuslak SL, Green LE et al. (2009). Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res 69: 4388–4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S et al. (2011). Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 21: 47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Ward E, Brawley O, Jemal A . (2011). Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61: 212–236.

    Article  PubMed  Google Scholar 

  • Sims 3rd RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P et al. (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28: 665–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims 3rd RJ, Reinberg D . (2009). Stem cells: escaping fates with open states. Nature 460: 802–803.

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: 27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes DG, Perry RP . (1995). DNA-binding and chromatin localization properties of CHD1. Mol Cell Biol 15: 2745–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui G, Shi Y . (2005). Gene silencing by a DNA vector-based RNAi technology. Methods Mol Biol 309: 205–218.

    CAS  PubMed  Google Scholar 

  • Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC et al. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99: 5515–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman B, Knudsen KE . (2009). Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 69: 8223–8230 Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D, Ogawa S, Kawamata N, Tunici P, Finocchiaro G, Eoli M et al. (2009). High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res 7: 665–677.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study is partially supported by the National Institutes of Health Grants CA135008 and CA133066 (to W Liu and WB Isaacs), CA119069 (to J Xu), CA131338 and 133009 (to SL Zheng and WB Isaacs). We thank Tamara Adams for editing the manuscript. The support of William T Gerrard, Mario Duhon, Jennifer and John Chalsty and P Kevin Jaffe (to WBI) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W B Isaacs or J Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Lindberg, J., Sui, G. et al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 31, 3939–3948 (2012). https://doi.org/10.1038/onc.2011.554

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.554

Keywords

This article is cited by

Search

Quick links