Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Abnormal MDMX degradation in tumor cells due to ARF deficiency

Abstract

MDMX is a heterodimeric partner of MDM2 and a critical regulator of p53. The MDMX level is generally elevated in tumors with wild-type p53 and contributes to p53 inactivation. MDMX degradation is controlled in part by MDM2-mediated ubiquitination. Here, we show that MDMX turnover is highly responsive to changes in MDM2 level in non-transformed cells, but not in tumor cells. We found that loss of alternate reading frame (ARF) expression, which occurs in most tumors with wild-type p53, significantly reduces MDMX sensitivity to MDM2. Restoration of ARF expression in tumor cells enables MDM2 to degrade MDMX in a dose-dependent manner. ARF binds to MDM2 and stimulates a second-site interaction between the central region of MDM2 and MDMX, and thus increases MDMX–MDM2 binding and MDMX ubiquitination. These results reveal an important abnormality in the p53-regulatory pathway as a consequence of ARF deficiency. Loss of ARF during tumor development not only prevents p53 stabilization by proliferative stress but also causes accumulation of MDMX that compromises p53 activity. This phenomenon may reduce the clinical efficacy of MDM2-specific inhibitors by preventing MDMX downregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Badciong JC, Haas AL . (2002). MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 277: 49668–49675.

    Article  CAS  Google Scholar 

  • Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW . (2001). Defining the molecular basis of Arf and Hdm2 interactions. J Mol Biol 314: 263–277.

    Article  CAS  Google Scholar 

  • Chen D, Shan J, Zhu WG, Qin J, Gu W . (2010). Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature 464: 624–627.

    Article  CAS  Google Scholar 

  • Chen J, Marechal V, Levine AJ . (1993). Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13: 4107–4114.

    Article  CAS  Google Scholar 

  • Chen L, Gilkes DM, Pan Y, Lane WS, Chen J . (2005). ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 24: 3411–3422.

    Article  CAS  Google Scholar 

  • Cheng Q, Chen L, Li Z, Lane WS, Chen J . (2009). ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 28: 3857–3867.

    Article  CAS  Google Scholar 

  • Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J . (2011). Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J Biol Chem 286: 16018–16029.

    Article  CAS  Google Scholar 

  • Dang J, Kuo ML, Eischen CM, Stepanova L, Sherr CJ, Roussel MF . (2002). The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62: 1222–1230.

    CAS  PubMed  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. (2004). Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24: 5835–5843.

    Article  CAS  Google Scholar 

  • Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S et al. (2006). Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49: 3432–3435.

    Article  CAS  Google Scholar 

  • Gilkes DM, Chen L, Chen J . (2006). MDMX regulation of p53 response to ribosomal stress. EMBO J 25: 5614–5625.

    Article  CAS  Google Scholar 

  • Grier JD, Xiong S, Elizondo-Fraire AC, Parant JM, Lozano G . (2006). Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol 26: 192–198.

    Article  CAS  Google Scholar 

  • Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG et al. (2002). Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 277: 19251–19254.

    Article  CAS  Google Scholar 

  • Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J . (2006). MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 281: 33030–33035.

    Article  CAS  Google Scholar 

  • Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS et al. (2007). Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12: 355–366.

    Article  CAS  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A . (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.

    Article  CAS  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  CAS  Google Scholar 

  • Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM . (2003a). DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 278: 45946–45953.

    Article  CAS  Google Scholar 

  • Kawai H, Wiederschain D, Yuan ZM . (2003b). Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 23: 4939–4947.

    Article  CAS  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. (2006). Inactivation of the p53 pathway in retinoblastoma. Nature 444: 61–66.

    Article  CAS  Google Scholar 

  • Li B, Cheng Q, Li Z, Chen J . (2010). p53 inactivation by MDM2 and MDMX negative feedback loops in testicular germ cell tumors. Cell Cycle 9: 1411–1420.

    Article  CAS  Google Scholar 

  • Li C, Chen L, Chen J . (2002). DNA damage induces MDMX nuclear translocation by p53-dependent and -independent mechanisms. Mol Cell Biol 22: 7562–7571.

    Article  CAS  Google Scholar 

  • Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M . (2003). HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100: 12009–12014.

    Article  CAS  Google Scholar 

  • Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL . (2008). Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 15: 841–848.

    Article  CAS  Google Scholar 

  • Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS et al. (2010). An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18: 231–243.

    Article  CAS  Google Scholar 

  • Maetens M, Doumont G, Clercq SD, Francoz S, Froment P, Bellefroid E et al. (2007). Distinct roles of Mdm2 and Mdm4 in red cell production. Blood 109: 2630–2633.

    Article  CAS  Google Scholar 

  • Meulmeester E, Frenk R, Stad R, de Graaf P, Marine JC, Vousden KH et al. (2003). Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol Cell Biol 23: 4929–4938.

    Article  CAS  Google Scholar 

  • Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT et al. (2000). An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19: 2312–2323.

    Article  CAS  Google Scholar 

  • Millard M, Pathania D, Grande F, Xu S, Neamati N . (2011). Small-molecule inhibitors of p53-MDM2 interaction: the 2006–2010 update. Curr Pharma Design 17: 536–559.

    Article  CAS  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G . (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.

    Article  CAS  Google Scholar 

  • Okamoto K, Kashima K, Pereg Y, Ishida M, Yamazaki S, Nota A et al. (2005). DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol Cell Biol 25: 9608–9620.

    Article  CAS  Google Scholar 

  • Pan Y, Chen J . (2003). MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 23: 5113–5121.

    Article  CAS  Google Scholar 

  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG et al. (2001). Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29: 92–95.

    Article  CAS  Google Scholar 

  • Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW . (2006). Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 66: 3169–3176.

    Article  CAS  Google Scholar 

  • Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M et al. (2005). Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA 102: 5056–5061.

    Article  CAS  Google Scholar 

  • Phillips A, Teunisse A, Lam S, Lodder K, Darley M, Emaduddin M et al. (2010). HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 285: 29111–29127.

    Article  CAS  Google Scholar 

  • Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . (2001). Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61: 1839–1842.

    CAS  Google Scholar 

  • Sasaki M, Nie L, Maki CG . (2007). MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J Biol Chem 282: 14626–14634.

    Article  CAS  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105: 3933–3938.

    Article  CAS  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  Google Scholar 

  • Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G et al. (1997). Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 43: 34–42.

    Article  CAS  Google Scholar 

  • Sivakolundu SG, Nourse A, Moshiach S, Bothner B, Ashley C, Satumba J et al. (2008). Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo. J Mol Biol 384: 240–254.

    Article  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  Google Scholar 

  • Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M . (1999). MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447: 5–9.

    Article  CAS  Google Scholar 

  • Terzian T, Wang Y, Van Pelt CS, Box NF, Travis EL, Lozano G . (2007). Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol 27: 5479–5485.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Wade M, Wong ET, Tang M, Stommel JM, Wahl GM . (2006). Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 281: 33036–33044.

    Article  CAS  Google Scholar 

  • Wang X, Arooz T, Siu WY, Chiu CH, Lau A, Yamashita K et al. (2001). MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett 490: 202–208.

    Article  CAS  Google Scholar 

  • Wang YV, Leblanc M, Wade M, Jochemsen AG, Wahl GM . (2009). Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA-damage-activated kinases. Cancer Cell 16: 33–43.

    Article  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ . (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132.

    Article  CAS  Google Scholar 

  • Xia M, Knezevic D, Tovar C, Huang B, Heimbrook DC, Vassilev LT . (2008). Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation. Cell Cycle 7: 1604–1612.

    Article  CAS  Google Scholar 

  • Xiong S, Pant V, Suh YA, Van Pelt CS, Wang Y, Valentin-Vega YA et al. (2010). Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res 70: 7148–7154.

    Article  CAS  Google Scholar 

  • Xiong S, Van Pelt CS, Elizondo-Fraire AC, Liu G, Lozano G . (2006). Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci USA 103: 3226–3231.

    Article  CAS  Google Scholar 

  • Zhang Y, Lu H . (2009). Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369–377.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Dawn Quelle for NARF6 cells and Dr Yanping Zhang for ARF-null MEF. This work was supported in part by grants from the National Institutes of Health (CA141244, CA109636 and CA118210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website ()

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gilkes, D., Li, B. et al. Abnormal MDMX degradation in tumor cells due to ARF deficiency. Oncogene 31, 3721–3732 (2012). https://doi.org/10.1038/onc.2011.534

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.534

Keywords

This article is cited by

Search

Quick links