Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Atypical mechanism of NF-κB activation by TRE17/ubiquitin-specific protease 6 (USP6) oncogene and its requirement in tumorigenesis

Abstract

The NF-κB transcription factor has a central role in diverse processes, including inflammation, proliferation and cell survival, and its activity is dysregulated in diseases such as autoimmunity and cancer. We recently identified the TRE17/ubiquitin-specific protease 6 (USP6) oncogene as the first de-ubiquitinating enzyme to activate NF-κB. TRE17/USP6 is translocated and overexpressed in aneurysmal bone cyst (ABC), a pediatric tumor characterized by extensive bone degradation and inflammatory recruitment. In the current study, we explore the mechanism by which TRE17 induces activation of NF-κB, and find that it activates the classical NF-κB pathway through an atypical mechanism that does not involve IκB degradation. TRE17 co-precipitates with IκB kinase (IKK), and IKK activity is augmented in stable cell lines overexpressing TRE17, in a USP-dependent manner. Optimal activation of NF-κB by TRE17 requires both catalytic subunits of IKK, distinguishing its mechanism from the classical and non-canonical pathways, which require either IKKβ or IKKα, respectively. TRE17 stimulates phosphorylation of p65 at serine 536, a modification that has been associated with enhanced transcriptional activity and nuclear retention. Induction of S536 phosphorylation by TRE17 requires both IKKα and IKKβ, as well as the IKKγ/NEMO regulatory subunit of IKK. We further demonstrate that TRE17(long) is highly tumorigenic when overexpressed in NIH3T3 fibroblasts, and that inhibition of NF-κB significantly attenuates tumor formation. In summary, these studies uncover an unexpected signaling mechanism for activation of classical NF-κB by TRE17. They further reveal a critical role for NF-κB in TRE17-mediated tumorigenesis, and suggest that NF-κB inhibitors may function as effective therapeutic agents in the treatment of ABC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY et al. (1995). Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 15: 2809–2818.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. [comment]. Nature 424: 797–801.

    Article  CAS  Google Scholar 

  • Buss H, Dorrie A, Schmitz ML, Hoffmann E, Resch K, Kracht M . (2004). Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 279: 55633–55643.

    Article  CAS  Google Scholar 

  • Calzado MA, Bacher S, Schmitz ML . (2007). NF-kappaB inhibitors for the treatment of inflammatory diseases and cancer. Curr Med Chem 14: 367–376.

    Article  CAS  Google Scholar 

  • Choudhary S, Lu M, Cui R, Brasier AR . (2007). Involvement of a novel Rac/RhoA guanosine triphosphatase-nuclear factor-kappaB inducing kinase signaling pathway mediating angiotensin II-induced RelA transactivation. Mol Endocrinol 21: 2203–2217.

    Article  CAS  Google Scholar 

  • Cottalorda J, Bourelle S . (2007). Modern concepts of primary aneurysmal bone cyst. Arch Orthop Trauma Surg 127: 105–114.

    Article  Google Scholar 

  • Dobrovolskaia MA, Kozlov SV . (2005). Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Curr Cancer Drug Targets 5: 325–344.

    Article  CAS  Google Scholar 

  • Douillette A, Bibeau-Poirier A, Gravel SP, Clement JF, Chenard V, Moreau P et al. (2006). The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IkappaB kinase complex. J Biol Chem 281: 13275–13284.

    Article  CAS  Google Scholar 

  • Gilmore TD . (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684.

    Article  CAS  Google Scholar 

  • Hacker H, Karin M . (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006: re13.

    Article  Google Scholar 

  • Hansberger MW, Campbell JA, Danthi P, Arrate P, Pennington KN, Marcu KB et al. (2007). IkappaB kinase subunits alpha and gamma are required for activation of NF-kappaB and induction of apoptosis by mammalian reovirus. J Virol 81: 1360–1371.

    Article  CAS  Google Scholar 

  • Harhaj EW, Dixit VM . (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 21: 22–39.

    Article  CAS  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW . (2006). IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26: 457–471.

    Article  CAS  Google Scholar 

  • Hu J, Nakano H, Sakurai H, Colburn NH . (2004). Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis 25: 1991–2003.

    Article  CAS  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    Article  CAS  Google Scholar 

  • Khandaker NA, Fazal F, Malik AB, Rahman A . (2004). RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1. Expression in endothelial cells via activation of IκB kinase β and phosphorylation of RelA/p65. J Immunol 173: 6965–6972.

    Article  Google Scholar 

  • Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . (2003). The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. [comment]. Nature 424: 801–805.

    Article  CAS  Google Scholar 

  • Lau AW, Pringle LM, Quick L, Riquelme DN, Ye Y, Oliveira AM et al. (2010). TRE17/Ubiquitin-specific protease 6 (USP6) oncogene translocated in aneurysmal bone cyst blocks osteoblastic maturation via an autocrine mechanism involving bone morphogenetic protein dysregulation. J Biol Chem 285: 37111–37120.

    Article  CAS  Google Scholar 

  • Lee DF, Hung MC . (2008). Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin Cancer Res 14: 5656–5662.

    Article  CAS  Google Scholar 

  • Liu S, Chen ZJ . (2008). Expanding role of ubiquitination in NF-kappaB signaling. Cell Res 21: 6–21.

    Article  Google Scholar 

  • Mankin HJ, Hornicek FJ, Ortiz-Cruz E, Villafuerte J, Gebhardt MC . (2005). Aneurysmal bone cyst: a review of 150 patients. J Clin Oncol 23: 6756–6762.

    Article  Google Scholar 

  • Martinu L, Masuda-Robens JM, Robertson SE, Santy LC, Casanova JE, Chou MM . (2004). The TBC (Tre-2/Bub2/Cdc16) domain protein TRE17 regulates plasma membrane-endosomal trafficking through activation of Arf6. Mol Cell Biol 24: 9752–9762.

    Article  CAS  Google Scholar 

  • Masuda-Robens JM, Kutney SN, Qi H, Chou MM . (2003). The TRE17 oncogene encodes a component of a novel effector pathway for Rho GTPases Cdc42 and Rac 1 and stimulates actin remodeling. Mol Cell Biol 23: 2151–2161.

    Article  CAS  Google Scholar 

  • Mattioli I, Sebald A, Bucher C, Charles RP, Nakano H, Doi T et al. (2004). Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172: 6336–6344.

    Article  CAS  Google Scholar 

  • Mendenhall WM, Zlotecki RA, Gibbs CP, Reith JD, Scarborough MT, Mendenhall NP . (2006). Aneurysmal bone cyst. Am J Clin Oncol 29: 311–315.

    Article  Google Scholar 

  • Nakamura T, Hillova J, Mariage-Samson R, Onno M, Huebner K, Cannizzaro LA et al. (1992). A novel transcriptional unit of the tre oncogene widely expressed in human cancer cells. Oncogene 7: 733–741.

    CAS  PubMed  Google Scholar 

  • Oliveira AM, Hsi BL, Weremowicz S, Rosenberg AE, Dal Cin P, Joseph N et al. (2004a). USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res 64: 1920–1923.

    Article  CAS  Google Scholar 

  • Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR et al. (2005). Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 24: 3419–3426.

    Article  CAS  Google Scholar 

  • Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL et al. (2004b). USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol 165: 1773–1780.

    Article  CAS  Google Scholar 

  • Orlowski RZ, Baldwin Jr AS . (2002). NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8: 385–389.

    Article  CAS  Google Scholar 

  • Pahl HL . (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.

    Article  CAS  Google Scholar 

  • Rollins BJ . (2006). Inflammatory chemokines in cancer growth and progression. Eur J Cancer 42: 760–767.

    Article  CAS  Google Scholar 

  • Saccomanni B . (2008). Aneurysmal bone cyst of spine: a review of literature. Arch Orthop Trauma Surg 128: 1145–1147.

    Article  CAS  Google Scholar 

  • Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W . (1999). IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 274: 30353–30356.

    Article  CAS  Google Scholar 

  • Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A et al. (2003). Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278: 36916–36923.

    Article  CAS  Google Scholar 

  • Sasaki CY, Barberi TJ, Ghosh P, Longo DL . (2005). Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem 280: 34538–34547.

    Article  CAS  Google Scholar 

  • Shen C, Ye Y, Robertson SE, Lau AW, Mak DO, Chou MM . (2005). Calcium/calmodulin regulates ubiquitination of the ubiquitin-specific protease TRE17/USP6. J Biol Chem 280: 35967–35973.

    Article  CAS  Google Scholar 

  • Shimada H, Rajagopalan LE . (2010). Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65. J Biol Chem 285: 12536–12542.

    Article  CAS  Google Scholar 

  • Sitcheran R, Comb WC, Cogswell PC, Baldwin AS . (2008). Essential role for epidermal growth factor receptor in glutamate receptor signaling to NF-kappaB. Mol Cell Biol 28: 5061–5070.

    Article  CAS  Google Scholar 

  • Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR . (2002). Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 277: 3863–3869.

    Article  CAS  Google Scholar 

  • Skaug B, Jiang X, Chen ZJ . (2009). The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78: 769–796.

    Article  CAS  Google Scholar 

  • Solt LA, Madge LA, Orange JS, May MJ . (2007). Interleukin-1-induced NF-kappaB activation is NEMO-dependent but does not require IKKbeta. J Biol Chem 282: 8724–8733.

    Article  CAS  Google Scholar 

  • Sun W, Li H, Yu Y, Fan Y, Grabiner BC, Mao R et al. (2009). MEKK3 is required for lysophosphatidic acid-induced NF-kappaB activation. Cell Signal 21: 1488–1494.

    Article  CAS  Google Scholar 

  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. [comment]. Nature 424: 793–796.

    Article  CAS  Google Scholar 

  • Viatour P, Merville MP, Bours V, Chariot A . (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30: 43–52.

    Article  CAS  Google Scholar 

  • Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430: 694–699.

    Article  CAS  Google Scholar 

  • Yang F, Tang E, Guan K, Wang CY . (2003). IKK beta plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J Immunol 170: 5630–5635.

    Article  CAS  Google Scholar 

  • Ye Y, Pringle LM, Lau AW, Riquelme DN, Wang H, Jiang T et al. (2010). TRE17/USP6 oncogene translocated in aneurysmal bone cyst induces matrix metalloproteinase production via activation of NF-kappaB. Oncogene 29: 3619–3629.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant RO1 CA081415 (to MMC) and Grant P30 AS050950 (Penn Center for Musculoskeletal Disorders). This work was also supported by the National Service Research Award Grant F31CA126488 (to LMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Chou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pringle, L., Young, R., Quick, L. et al. Atypical mechanism of NF-κB activation by TRE17/ubiquitin-specific protease 6 (USP6) oncogene and its requirement in tumorigenesis. Oncogene 31, 3525–3535 (2012). https://doi.org/10.1038/onc.2011.520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.520

Keywords

This article is cited by

Search

Quick links