Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel small molecule antagonist of choline kinase-α that simultaneously suppresses MAPK and PI3K/AKT signaling

Abstract

Choline kinase-α expression and activity are increased in multiple human neoplasms as a result of growth factor stimulation and activation of cancer-related signaling pathways. The product of choline kinase-α, phosphocholine, serves as an essential metabolic reservoir for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the production of lipid second messengers. Using in silico screening for small molecules that may interact with the choline kinase-α substrate binding domain, we identified a novel competitive inhibitor, N-(3,5-dimethylphenyl)-2-[[5-(4-ethylphenyl)-1H-1,2,4-triazol-3-yl]sulfanyl] acetamide (termed CK37) that inhibited purified recombinant human choline kinase-α activity, reduced the steady-state concentration of phosphocholine in transformed cells, and selectively suppressed the growth of neoplastic cells relative to normal epithelial cells. Choline kinase-α activity is required for the downstream production of phosphatidic acid, a promoter of several Ras signaling pathways. CK37 suppressed mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT signaling, disrupted actin cytoskeletal organization, and reduced plasma membrane ruffling. Finally, administration of CK37 significantly decreased tumor growth in a lung tumor xenograft mouse model, suppressed tumor phosphocholine, and diminished activating phosphorylations of extracellular signal-regulated kinase and AKT in vivo. Together, these results further validate choline kinase-α as a molecular target for the development of agents that interrupt Ras signaling pathways, and indicate that receptor-based computational screening should facilitate the identification of new classes of choline kinase-α inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ackerstaff E, Glunde K, Bhujwalla ZM . (2003). Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem 90: 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Aoyama C, Liao H, Ishidate K . (2004). Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43: 266–281.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan FG, McReynolds M, Couvillon A, Kam Y, Holla VR, Dubois RN et al. (2005). Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc Natl Acad Sci USA 102: 1638–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua BT, Gallego-Ortega D, Ramirez de Molina A, Ullrich A, Lacal JC, Downward J . (2009). Regulation of Akt(ser473) phosphorylation by Choline kinase in breast carcinoma cells. Mol Cancer 8: 131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung T, Huang JS, Mukherjee JJ, Crilly KS, Kiss Z . (2000). Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I. Cell Signal 12: 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Degani H, Horowitz A, Itzchak Y . (1986). Breast tumors: evaluation with P-31 MR spectroscopy. Radiology 161: 53–55.

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu G, Kreizman T, Degani H . (2007). Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer 120: 1721–1730.

    Article  CAS  PubMed  Google Scholar 

  • Exton JH . (1990). Signaling through phosphatidylcholine breakdown. J Biol Chem 265: 1–4.

    CAS  PubMed  Google Scholar 

  • Fan TW, Kucia M, Jankowski K, Higashi RM, Ratajczak J, Ratajczak MZ et al. (2008). Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Mol Cancer 7: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J . (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294: 1942–1945.

    Article  CAS  PubMed  Google Scholar 

  • Foster DA, Xu L . (2003). Phospholipase D in cell proliferation and cancer. Mol Cancer Res 1: 789–800.

    CAS  PubMed  Google Scholar 

  • Glunde K, Bhujwalla ZM . (2007). Choline kinase alpha in cancer prognosis and treatment. Lancet Oncol 8: 855–857.

    Article  CAS  PubMed  Google Scholar 

  • Glunde K, Raman V, Mori N, Bhujwalla ZM . (2005). RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res 65: 11034–11043.

    Article  CAS  PubMed  Google Scholar 

  • Glunde K, Shah T, Winnard Jr PT, Raman V, Takagi T, Vesuna F et al. (2008). Hypoxia regulates choline kinase expression through hypoxia-inducible factor-1 alpha signaling in a human prostate cancer model. Cancer Res 68: 172–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha KS, Exton JH . (1993). Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol 123: 1789–1796.

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF . (2007). PA promoted to manager. Nat Cell Biol 9: 615–617.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Alcoceba R, Fernandez F, Lacal JC . (1999). In vivo antitumor activity of choline kinase inhibitors: a novel target for anticancer drug discovery. Cancer Res 59: 3112–3118.

    CAS  PubMed  Google Scholar 

  • Hernandez-Alcoceba R, Saniger L, Campos J, Nunez MC, Khaless F, Gallo MA et al. (1997). Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene 15: 2289–2301.

    Article  CAS  PubMed  Google Scholar 

  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S et al. (2008). Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15: 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D'Ascenzo S et al. (2005). Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res 65: 9369–9376.

    Article  CAS  PubMed  Google Scholar 

  • Irwin JJ, Shoichet BK . (2005). ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45: 177–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain AN . (2007). Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21: 281–306.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez B, del Peso L, Montaner S, Esteve P, Lacal JC . (1995). Generation of phosphorylcholine as an essential event in the activation of Raf-1 and MAP-kinases in growth factors-induced mitogenic stimulation. J Cell Biochem 57: 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Kent C . (1995). Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 64: 315–343.

    Article  CAS  PubMed  Google Scholar 

  • Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H et al. (2008). Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118: 3051–3064.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko KW, Cook HW, Vance DE . (1986). Reduction of phosphatidylcholine turnover in a Nb 2 lymphoma cell line after prolactin treatment. A novel mechanism for control of phosphatidylcholine levels in cells. J Biol Chem 261: 7846–7852.

    CAS  PubMed  Google Scholar 

  • Li G, D'Souza-Schorey C, Barbieri MA, Cooper JA, Stahl PD . (1997). Uncoupling of membrane ruffling and pinocytosis during Ras signal transduction. J Biol Chem 272: 10337–10340.

    Article  CAS  PubMed  Google Scholar 

  • Malito E, Sekulic N, Too WC, Konrad M, Lavie A . (2006). Elucidation of human choline kinase crystal structures in complex with the products ADP or phosphocholine. J Mol Biol 364: 136–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EW et al. (2007). Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. Adv Enzyme Regul 47: 64–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neeman M, Degani H . (1989). Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: 31P and 13C NMR studies. Proc Natl Acad Sci USA 86: 5585–5589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onodera K, Okubo A, Yasumoto K, Suzuki T, Kimura G, Nomoto K . (1986). 31P nuclear magnetic resonance analysis of lung cancer: the perchloric acid extract spectrum. Jpn J Cancer Res 77: 1201–1206.

    CAS  PubMed  Google Scholar 

  • Ramirez de Molina A, Banez-Coronel M, Gutierrez R, Rodriguez-Gonzalez A, Olmeda D, Megias D et al. (2004a). Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res 64: 6732–6739.

    Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Gallego-Ortega D, Sarmentero J, Banez-Coronel M, Martin-Cantalejo Y, Lacal JC . (2005). Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res 65: 5647–5653.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez de Molina A, Gutierrez R, Ramos MA, Silva JM, Silva J, Bonilla F et al. (2002a). Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene 21: 4317–4322.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez de Molina A, Penalva V, Lucas L, Lacal JC . (2002b). Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. Oncogene 21: 937–946.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F et al. (2002c). Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296: 580–583.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez de Molina A, Rodriguez-Gonzalez A, Lacal JC . (2004b). From Ras signalling to ChoK inhibitors: a further advance in anticancer drug design. Cancer Lett 206: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo M, Romero G . (2002). Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 94: 35–50.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, Frohman MA et al. (1999). Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 274: 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo MA, Shome K, Watkins SC, Romero G . (2000). The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 275: 23911–23918.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez A, Ramirez de Molina A, Fernandez F, Ramos MA, del Carmen Nunez M, Campos J et al. (2003). Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene 22: 8803–8812.

    Article  CAS  PubMed  Google Scholar 

  • Roovers K, Assoian RK . (2003). Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases. Mol Cell Biol 23: 4283–4294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP . (2008). Tenets of PTEN tumor suppression. Cell 133: 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Scales SJ, Scheller RH . (1999). Lipid membranes shape up. Nature 401: 123–124.

    Article  CAS  PubMed  Google Scholar 

  • Taetle R, Rosen F, Abramson I, Venditti J, Howell S . (1987). Use of nude mouse xenografts as preclinical drug screens: in vivo activity of established chemotherapeutic agents against melanoma and ovarian carcinoma xenografts. Cancer Treat Rep 71: 297–304.

    CAS  PubMed  Google Scholar 

  • Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25: 7225–7234.

    Article  CAS  PubMed  Google Scholar 

  • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA . (2008). Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic Acid—a competition with rapamycin. Mol Cell Biol 29: 1411–1420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida T . (1996). Stimulation of phospholipid synthesis in HeLa cells by epidermal growth factor and insulin: activation of choline kinase and glycerophosphate acyltransferase. Biochim Biophys Acta 1304: 89–104.

    Article  PubMed  Google Scholar 

  • Vieira AV, Lamaze C, Schmid SL . (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089.

    Article  CAS  PubMed  Google Scholar 

  • von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR . (2000). Ras activation in human breast cancer. Breast Cancer Res Treat 62: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Warden CH, Friedkin M . (1985). Regulation of choline kinase activity and phosphatidylcholine biosynthesis by mitogenic growth factors in 3T3 fibroblasts. J Biol Chem 260: 6006–6011.

    CAS  PubMed  Google Scholar 

  • Wu G, Aoyama C, Young SG, Vance DE . (2008). Early embryonic lethality caused by disruption of the gene for choline kinase alpha, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem 283: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  • Yalcin A, Clem B, Makoni S, Clem A, Nelson K, Thornburg J et al. (2009). Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. Oncogene 29: 139–149.

    Article  PubMed  Google Scholar 

  • Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D . (2007). Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9: 706–712.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Deanna Siow and Binks Wattenburg for assistance with the thin layer chromatography protocol, Erin Brock for assisting with the confocal microscopy experiments, Bennet Jenson for histopathology assistance, and Andrew Lane for NMR interpretation. We also thank Dr Arnon Lavie for providing the Δ49N-hCKα2 plasmid for the expression of recombinant choline kinase. NMR experiments were carried out at the James Graham Brown Cancer Center NMR facility, supported in part by the Brown Foundation and NCCRR Grant 1P20 RR18733. This work was supported by institutional funds from the James Graham Brown Cancer Center and by grants from the Ky Lung Cancer Research Program (JC & BFC) and the National Cancer Institute (JC: 2R56CA116428-0509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J O Trent or J Chesney.

Ethics declarations

Competing interests

BFC, ST, JOT and JC are listed as inventors on a submitted patent concerning content within this manuscript. The University of Louisville is the recognized patent holder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clem, B., Clem, A., Yalcin, A. et al. A novel small molecule antagonist of choline kinase-α that simultaneously suppresses MAPK and PI3K/AKT signaling. Oncogene 30, 3370–3380 (2011). https://doi.org/10.1038/onc.2011.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.51

Keywords

This article is cited by

Search

Quick links