Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of Myc oncogenic activity by nucleostemin haploinsufficiency

Abstract

Nucleostemin (NS), a nucleolar GTPase, is highly expressed in stem/progenitor cells and in most cancer cells. However, little is known about the regulation of its expression. Here, we identify the NS gene as a novel direct transcriptional target of the c-Myc oncoprotein. We show that Myc overexpression enhances NS transcription in cultured cells and in pre-neoplastic B cells from Eμ-myc transgenic mice. Consistent with NS being downstream of Myc, NS expression parallels that of Myc in a large panel of human cancer cell lines. Using chromatin immunoprecipitation we show that c-Myc binds to a well-conserved E-box in the NS promoter. Critically, we show NS haploinsufficiency profoundly delays Myc-induced cancer formation in vivo. NS+/−Eμ-myc transgenic mice have much slower rates of B-cell lymphoma development, with life spans twice that of their wild-type littermates. Moreover, we demonstrate that NS is essential for the proliferation of Myc-overexpressing cells in cultured cells and in vivo: impaired lymphoma development was associated with a drastic decrease of c-Myc-induced proliferation of pre-tumoural B cells. Finally, we provide evidence that in cell culture NS controls cell proliferation independently of p53 and that NS haploinsufficiency significantly delays lymphomagenesis in p53-deficient mice. Together these data indicate that NS functions downstream of Myc as a rate-limiting regulator of cell proliferation and transformation, independently from its putative role within the p53 pathway. Targeting NS is therefore expected to compromise early tumour development irrespectively of the p53 status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adams JM, Harris AW, Langdon WY, Pinkert CA, Brinster RL, Palmiter RD et al. (1986). c-myc-induced lymphomagenesis in transgenic mice and the role of the Pvt-1 locus in lymphoid neoplasia. Curr Top Microbiol Immunol 132: 1–8.

    CAS  PubMed  Google Scholar 

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    CAS  PubMed  Google Scholar 

  • Askew DS, Ashmun RA, Simmons BC, Cleveland JL . (1991). Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6: 1915–1922.

    CAS  PubMed  Google Scholar 

  • Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. (2008). Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456: 971–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beekman C, Nichane M, De Clercq S, Maetens M, Floss T, Wurst W et al. (2006). Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol Cell Biol 26: 9291–9301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi R, Pandolfi PP . (2003). The nucleolus: at the stem of immortality. Nat Med 9: 24–25.

    Article  CAS  PubMed  Google Scholar 

  • Bouchard C, Staller P, Eilers M . (1998). Control of cell proliferation by Myc. Trends Cell Biol 8: 202–206.

    Article  CAS  PubMed  Google Scholar 

  • Brodsky AS, Meyer CA, Swinburne IA, Hall G, Keenan BJ, Liu XS et al. (2005). Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol 6: R64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JP, Wei W, Sedivy JM . (1997). Bypass of senescence after disruption of p21 CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277: 831–834.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Saito S, Anderson CW, Appella E, Xu Y . (2000). Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 97: 11936–11941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Olopade OI . (2008). MYC in breast tumor progression. Expert Rev Anticancer Ther 8: 1689–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai MS, Lu H . (2004). Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279: 44475–44482.

    Article  CAS  PubMed  Google Scholar 

  • Dai MS, Sun XX, Lu H . (2008). Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 28: 4365–4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H . (2004). Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24: 7654–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F . (2006). The c-Myc target gene network. Semin Cancer Biol 16: 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al. (2006). Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 354: 2431–2442.

    Article  CAS  PubMed  Google Scholar 

  • De Clercq S, Gembarska A, Denecker G, Maetens M, Naessens M, Haigh K et al. (2010). Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo. Mol Cell Biol 30: 5394–5405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M et al. (2007). Non-transcriptional control of DNA replication by c-Myc. Nature 448: 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    CAS  PubMed  Google Scholar 

  • Eilers M, Eisenman RN . (2008). Myc's broad reach. Genes Dev 22: 2755–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Woo D, Roussel MF, Cleveland JL . (2001). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol Cell Biol 21: 5063–5070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15: 2069–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han C, Zhang X, Xu W, Wang W, Qian H, Chen Y . (2005). Cloning of the nucleostemin gene and its function in transforming human embryonic bone marrow mesenchymal stem cells into F6 tumor cells. Int J Mol Med 16: 205–213.

    CAS  PubMed  Google Scholar 

  • Huang M, Itahana K, Zhang Y, Mitchell BS . (2009). Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin. Cancer Res 69: 3004–3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hursting SD, Perkins SN, Phang JM . (1994). Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. Proc Natl Acad Sci USA 91: 7036–7040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi H, Molander C, Penn LZ, Ishisaki A, Kohno K, Funa K . (2001). Mechanism for the transcriptional repression by c-Myc on PDGF beta-receptor. J Cell Sci 114: 1533–1544.

    CAS  PubMed  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Jafarnejad SM, Mowla SJ, Matin MM . (2008). Knocking-down the expression of nucleostemin significantly decreases rate of proliferation of rat bone marrow stromal stem cells in an apparently p53-independent manner. Cell Prolif 41: 28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin A, Itahana K, O'Keefe K, Zhang Y . (2004). Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24: 7669–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidder BL, Yang J, Palmer S . (2008). Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3: e3932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee JH, Iyer VR . (2008). Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 3: e1798.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . (2003). A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 100: 8164–8169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin T, Meng L, Li Y, Tsai RY . (2010). Tumor-initiating function of nucleostemin-enriched mammary tumor cells. Cancer Res 70: 9444–9452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SJ, Cai ZW, Liu YJ, Dong MY, Sun LQ, Hu GF et al. (2004). Role of nucleostemin in growth regulation of gastric cancer, liver cancer and other malignancies. World J Gastroenterol 10: 1246–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo D, Lu H . (2010). Nucleostemin: Another nucleolar ‘Twister’ of the p53-MDM2 loop. Cell Cycle 9: 3227–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai S, Fluri M, Siwarski D, Huppi K . (1996). Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Res 4: 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Malakootian M, Mowla SJ, Saberi H, Asadi MH, Atlasi Y, Shafaroudi AM . (2010). Differential expression of nucleostemin, a stem cell marker, and its variants in different types of brain tumors. Mol Carcinog 49: 818–825.

    CAS  PubMed  Google Scholar 

  • Mao DY, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, Wong WW et al. (2003). Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13: 882–886.

    Article  CAS  PubMed  Google Scholar 

  • Marine JC . (2010). Pharmacological rescue of p53 in cancer therapy: widening the sensitive tumor spectrum by targeting MDMX. Cancer Cell 18: 399–400.

    Article  CAS  PubMed  Google Scholar 

  • Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . (1997). Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8: 1039–1048.

    CAS  PubMed  Google Scholar 

  • Mateyak MK, Obaya AJ, Sedivy JM . (1999). c-Myc regulates cyclin D-cdk4 and -cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 19: 4672–4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer N, Kim SS, Penn LZ . (2006). The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 16: 275–287.

    Article  CAS  PubMed  Google Scholar 

  • O'Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK et al. (2003). A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278: 12563–12573.

    Article  CAS  PubMed  Google Scholar 

  • Perna D, Faga G, Verrecchia A, Gorski MM, Barozzi I, Narang V et al. (2011). Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene (e-pub ahead of print 22 August 2011; doi:10.1038/onc.2011.359).

    Article  PubMed  PubMed Central  Google Scholar 

  • Prouty SM, Hanson KD, Boyle AL, Brown JR, Shichiri M, Follansbee MR et al. (1993). A cell culture model system for genetic analyses of the cell cycle by targeted homologous recombination. Oncogene 8: 899–907.

    CAS  PubMed  Google Scholar 

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR . (2004). p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431: 712–717.

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA et al. (2006). MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res 66: 6598–6605.

    Article  CAS  PubMed  Google Scholar 

  • Romanova L, Grand A, Zhang L, Rayner S, Katoku-Kikyo N, Kellner S et al. (2009). Critical role of nucleostemin in pre-rRNA processing. J Biol Chem 284: 4968–4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937–1947.

    Article  PubMed  Google Scholar 

  • Schorl C, Sedivy J . (2003). Loss of protooncogene c-Myc function impedes G1 phase progression both before and after the restriction point. Mol Biol Cell 14: 823–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  PubMed  Google Scholar 

  • Shaffer AL, Wright G, Yang L, Powell J, Ngo V, Lamy L et al. (2006). A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol Rev 210: 67–85.

    Article  CAS  PubMed  Google Scholar 

  • Sijin L, Ziwei C, Yajun L, Meiyu D, Hongwei Z, Guofa H et al. (2004). The effect of knocking-down nucleostemin gene expression on the in vitro proliferation and in vivo tumorigenesis of HeLa cells. J Exp Clin Cancer Res 23: 529–538.

    CAS  PubMed  Google Scholar 

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3: 392–399.

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM . (2007). MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol 39: 1476–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai RY, McKay RD . (2002). A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 16: 2991–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  • van Riggelen J, Muller J, Otto T, Beuger V, Yetil A, Choi PS et al. (2010). The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 24: 1281–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vita M, Henriksson M . (2006). The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16: 318–330.

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Alt FW, Gostissa M, Datta A, Murphy M, Alimzhanov MB et al. (2008). Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med 205: 3079–3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Jobling WA, Chen W, Hahn WC, Sedivy JM . (2003). Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23: 2859–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Zhou C, Cheng Q, Shen J, Chen H . (2008). Stem-cell-abundant proteins Nanog, nucleostemin and musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer 8: 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT et al. (2006). Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103: 17834–17839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang JH . (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord 11: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, DeSalle LM, Patel JH, Capobianco AJ, Duonan Y, Thomas-Tikhonenko A et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-Myc oncoprotein. PNAS 102: 13969–13973.

    Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Geconcerteerde Onderzoeksacties (GOA, University Ghent, Belgium). A K Zwolinska is a recipient of a FWO fellowship. Work in the Sedivy lab was supported by grant R01 GM041690 from the NIH. A Whiting was supported in part by training grant T32 GM007601. The Genomics Core Facility at Brown University was supported in part by the COBRE grant P20 RR015578.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-C Marine.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwolinska, A., Heagle Whiting, A., Beekman, C. et al. Suppression of Myc oncogenic activity by nucleostemin haploinsufficiency. Oncogene 31, 3311–3321 (2012). https://doi.org/10.1038/onc.2011.507

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.507

Keywords

This article is cited by

Search

Quick links