Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors

Abstract

The epidermal growth factor receptor (EGFR) is essential to multiple physiological and neoplastic processes via signaling by its tyrosine kinase domain and subsequent activation of transcription factors. EGFR overexpression and alteration, including point mutations and structural variants, contribute to oncogenesis in many tumor types. In this study, we identified an in-frame splice variant of the EGFR called mini-LEEK (mLEEK) that is more broadly expressed than the EGFR and is overexpressed in several cancers. Unlike previously characterized EGFR variants, mLEEK lacks the extracytoplasmic, transmembrane and tyrosine kinase domains. mLEEK localizes in the nucleus and functions as a transcription factor to regulate target genes involved in the cellular response to endoplasmic reticulum (ER) stress, including the master regulator of the unfolded protein response (UPR) pathways, molecular chaperone GRP78/Bip. We demonstrated that mLEEK regulates GRP78 transcription through direct interaction with a cis-regulatory element within the gene promoter. Several UPR pathways were interrogated and mLEEK expression was found to attenuate the induction of all pathways upon ER stress. Conversely, knockdown of mLEEK resulted in caspase-mediated cell death and sensitization to ER stress. These findings indicate that mLEEK levels determine cellular responses to unfavorable conditions that cause ER stress. This information, along with the overexpression of mLEEK in tumors, suggests unique strategies for therapeutic intervention. Furthermore, the identification of mLEEK expands the known mechanisms by which the EGFR gene contributes to oncogenesis and represents the first link between two previously disparate areas in cancer cell biology: EGFR signaling and the UPR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Allen TD, Cronshaw JM, Bagley S, Kiseleva E, Goldberg MW . (2000). The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113(Part 10): 1651–1659.

    CAS  PubMed  Google Scholar 

  • Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307: 935–939.

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Jin J, Yao T, Gottschalk AJ, Swanson SK, Wu S et al. (2007). YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol 14: 872–874.

    Article  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Chang SC, Erwin AE, Lee AS . (1989). Glucose-regulated protein (GRP94 and GRP78) genes share common regulatory domains and are coordinately regulated by common trans-acting factors. Mol Cell Biol 9: 2153–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demeter J, Beauheim C, Gollub J, Hernandez-Boussard T, Jin H, Maier D et al. (2007). The Stanford Microarray Database: implementation of new analysis tools and open source release of software. Nucleic Acids Res 35: D766–D770.

    Article  CAS  PubMed  Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP . (1991). Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51: 2164–2172.

    CAS  PubMed  Google Scholar 

  • Ekstrand AJ, Sugawa N, James CD, Collins VP . (1992). Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89: 4309–4313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eley G, Frederick L, Wang XY, Smith DI, James CD . (1998). 3′ end structure and rearrangements of EGFR in glioblastomas. Genes Chromosomes Cancer 23: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Feldman DE, Chauhan V, Koong AC . (2005). The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3: 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Lee AS . (2006). Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther 5: 741–744.

    Article  CAS  PubMed  Google Scholar 

  • Gorlich D, Kutay U . (1999). Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607–660.

    Article  CAS  PubMed  Google Scholar 

  • Haley J, Whittle N, Bennet P, Kinchington D, Ullrich A, Waterfield M . (1987). The human EGF receptor gene: structure of the 110 kb locus and identification of sequences regulating its transcription. Oncogene Res 1: 375–396.

    CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D . (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Holgado-Madruga M, Wong AJ . (2003). Gab1 is an integrator of cell death versus cell survival signals in oxidative stress. Mol Cell Biol 23: 4471–4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamora C, Dennert G, Lee AS . (1996). Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 93: 7690–7694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandul NP, Noor MA . (2009). Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3. BMC Genet 10: 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Adam RM, Freeman MR . (2005). Trafficking of nuclear heparin-binding epidermal growth factor-like growth factor into an epidermal growth factor receptor-dependent autocrine loop in response to oxidative stress. Cancer Res 65: 8242–8249.

    Article  CAS  PubMed  Google Scholar 

  • Kokame K, Kato H, Miyata T . (2001). Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276: 9199–9205.

    Article  CAS  PubMed  Google Scholar 

  • Koumenis C, Bi M, Ye J, Feldman D, Koong AC . (2007). Hypoxia and the unfolded protein response. Methods Enzymol 435: 275–293.

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R et al. (2008). A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15: 364–375.

    Article  CAS  PubMed  Google Scholar 

  • Lawson B, Brewer JW, Hendershot LM . (1998). Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174: 170–178.

    Article  CAS  PubMed  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH . (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23: 7448–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS . (2005). The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35: 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Lee AS . (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67: 3496–3499.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S et al. (2000). ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 20: 5096–5106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao HJ, Carpenter G . (2007). Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell 18: 1064–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libermann TA, Razon N, Bartal AD, Yarden Y, Schlessinger J, Soreq H . (1984). Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44: 753–760.

    CAS  PubMed  Google Scholar 

  • Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B et al. (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science 318: 944–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3: 802–808.

    Article  CAS  PubMed  Google Scholar 

  • Liu ES, Lee AS . (1991). Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. Nucleic Acids Res 19: 5425–5431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC . (2006). Nuclear–cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 98: 1570–1583.

    Article  CAS  PubMed  Google Scholar 

  • Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC . (2005). Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 65: 338–348.

    CAS  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  • Macara IG . (2001). Transport into and out of the nucleus. Microbiol Mol Biol Rev 65: 570–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malden LT, Novak U, Kaye AH, Burgess AW . (1988). Selective amplification of the cytoplasmic domain of the epidermal growth factor receptor gene in glioblastoma multiforme. Cancer Res 48: 2711–2714.

    CAS  PubMed  Google Scholar 

  • Malhotra JD, Kaufman RJ . (2007). The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18: 716–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moenner M, Pluquet O, Bouchecareilh M, Chevet E . (2007). Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 67: 10631–10634.

    Article  CAS  PubMed  Google Scholar 

  • Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ . (1998). Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273: 200–206.

    Article  CAS  PubMed  Google Scholar 

  • Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ . (1996). Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 13: 85–96.

    CAS  PubMed  Google Scholar 

  • Mu TW, Ong DS, Wang YJ, Balch WE, Yates III JR, Segatori L et al. (2008). Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134: 769–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni CY, Murphy MP, Golde TE, Carpenter G . (2001). Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294: 2179–2181.

    Article  CAS  PubMed  Google Scholar 

  • Oyadomari S, Mori M . (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11: 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  • Parker R, Phan T, Baumeister P, Roy B, Cheriyath V, Roy AL et al. (2001). Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol 21: 3220–3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen MW, Meltorn M, Damstrup L, Poulsen HS . (2001a). The type III epidermal growth factor receptor mutation biological significance and potential target for anti-cancer therapy. Ann Oncol 12: 745–760.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MW, Pedersen N, Damstrup L, Villingshoj M, Sonder SU, Rieneck K et al. (2005). Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation. J Cell Biochem 96: 412–427.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MW, Thykjaer T, Orntoft TF, Damstrup L, Poulsen HS . (2001b). Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line. Br J Cancer 85: 1211–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pines G, Huang PH, Zwang Y, White FM, Yarden Y . (2010). EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene 29: 5850–5860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R et al. (2005). Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 11: 5856–5862.

    Article  CAS  PubMed  Google Scholar 

  • Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS . (2007). The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67: 9809–9816.

    Article  CAS  PubMed  Google Scholar 

  • Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS . (2003). Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278: 20915–20924.

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Kim N, Xing Y, Lee C . (2008). The effect of intron length on exon creation ratios during the evolution of mammalian genomes. RNA 14: 2261–2273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart M, Baker RP, Bayliss R, Clayton L, Grant RP, Littlewood T et al. (2001). Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett 498: 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Lu J, Zahed M, Kita K, Suzuki N . (2007). Reduction of GRP78 expression with siRNA activates unfolded protein response leading to apoptosis in HeLa cells. Arch Biochem Biophys 468: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP . (1990). Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci USA 87: 2466–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai B, Ye Y, Rapoport TA . (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3: 246–255.

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Yamaguchi H, Huo L, Du Y, Lee HJ, Lee HH et al. (2010). The translocon Sec61beta localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem 285: 38720–38729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ et al. (2008). Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13: 385–393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B . (1987). Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84: 6899–6903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS et al. (1992). Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc NatlAcad Sci USA 89: 2965–2969.

    Article  CAS  Google Scholar 

  • Wouters BG, Koritzinsky M . (2008). Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8: 851–864.

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Su K, Wang D, Paterson AJ, Kudlow JE . (1997). MDA468 growth inhibition by EGF is associated with the induction of the cyclin-dependent kinase inhibitor p21WAF1. Anticancer Res 17: 2627–2633.

    CAS  PubMed  Google Scholar 

  • Yamazaki H, Fukui Y, Ueyama Y, Tamaoki N, Kawamoto T, Taniguchi S et al. (1988). Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol 8: 1816–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K . (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins Involvement of basic leucine zipper transcription factors. J Biol Chem 273: 33741–33749.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K . (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881–891.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M et al. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20: 6755–6767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R Nitta, G Li, S Mitra, C Del Vecchio and M Holgado-Madruga for comments. We thank K Mori, K Kokame, R Prywes and G Nolan for reagents. This work was supported by the NIH under Ruth L Kirschstein National Research Service Award F31 NS056581 from the NINDS to ECP, the Ovarian SPORE at FCCC (P50 CA083638) to AKG and AJW, NIH Grants R01 CA69495, R01 CA096539 and R01 CA124832, as well as a research grant from the National Brain Tumor Foundation and Grant 15IB-0080 from the California Breast Cancer Program to AJW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Wong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccione, E., Lieu, T., Gentile, C. et al. A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors. Oncogene 31, 2953–2967 (2012). https://doi.org/10.1038/onc.2011.465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.465

Keywords

This article is cited by

Search

Quick links