Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Male germ cell-associated kinase is overexpressed in prostate cancer cells and causes mitotic defects via deregulation of APC/CCDH1

Abstract

Male germ cell-associated kinase (MAK), a direct transcriptional target of androgen receptor (AR), is a co-activator of AR. In this study, we determined the activating mechanism of MAK and identified a previously unknown AR-independent role of MAK in mitosis. We found that MAK kinase activity requires dual phosphorylation of the conserved TDY motif and that the phosphorylation is dynamic during cell cycle. MAK associates with CDH1 (FZR1, fizzy/cell division cycle 20 related 1) and phosphorylates CDH1 at sites phosphorylated by cyclin-dependent kinases. When MAK is overexpressed, the binding of CDH1 to anaphase promoting complex/cyclosome decreased, resulting in an attenuation of anaphase-promoting complex/C ubiquitin ligase activity and the consequential stabilization of the CDH1 targets such as Aurora kinase A and Polo-like kinase 1. As such, overexpression of MAK leads to mitotic defects such as centrosome amplification and lagging chromosomes. Our immunohistochemistry result showed that MAK is overexpressed in prostate tumor tissues, suggesting a role of MAK in prostate carcinogenesis. Taken with our previous results, our data implicate MAK in both AR activation and chromosomal instability, acting in both early and late prostate cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Beheshti B, Park PC, Sweet JM, Trachtenberg J, Jewett MA, Squire JA . (2001). Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase fish analysis. Neoplasia 3: 62–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolte M, Steigemann P, Braus GH, Irniger S . (2002). Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proc Natl Acad Sci USA 99: 4385–4390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NR, Noble ME, Lawrie AM, Morris MC, Tunnah P, Divita G et al. (1999). Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem 274: 8746–8756.

    Article  CAS  PubMed  Google Scholar 

  • Buschhorn HM, Klein RR, Chambers SM, Hardy MC, Green S, Bearss D et al. (2005). Aurora-A over-expression in high-grade PIN lesions and prostate cancer. Prostate 64: 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39.

    Article  PubMed  Google Scholar 

  • Clark JP, Cooper CS . (2009). ETS gene fusions in prostate cancer. Nat Rev Urol 6: 429–439.

    Article  CAS  PubMed  Google Scholar 

  • Engelbert D, Schnerch D, Baumgarten A, Wasch R . (2008). The ubiquitin ligase APC(Cdh1) is required to maintain genome integrity in primary human cells. Oncogene 27: 907–917.

    Article  CAS  PubMed  Google Scholar 

  • Feldman BJ, Feldman D . (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Larson KA, Chitta RK, Parker SA, Turk BE, Lawrence MW et al. (2006). Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol Cell Biol 26: 8639–8654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Z, Schroeder MJ, Shabanowitz J, Kaldis P, Togawa K, Rustgi AK et al. (2005). Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol 25: 6047–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D . (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature 460: 278–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S et al. (2008). Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 10: 802–811.

    Article  PubMed  Google Scholar 

  • Gibas Z, Becher R, Kawinski E, Horoszewicz J, Sandberg AA . (1984). A high-resolution study of chromosome changes in a human prostatic carcinoma cell line (LNCaP). Cancer Genet Cytogenet 11: 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS et al. (2001). A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–4319.

    CAS  PubMed  Google Scholar 

  • Holt LJ, Hutti JE, Cantley LC, Morgan DO . (2007). Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 25: 689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honigberg SM . (2004). Ime2p and Cdc28p: co-pilots driving meiotic development. J Cell Biochem 92: 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  • Jaspersen SL, Charles JF, Morgan DO . (1999). Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9: 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Koji T, Jinno A, Matsushime H, Shibuya M, Nakane PK . (1992). In situ localization of male germ cell-associated kinase (mak) mRNA in adult mouse testis: specific expression in germ cells at stages around meiotic cell division. Cell Biochem Funct 10: 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM . (2005). The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 18: 543–553.

    Article  CAS  PubMed  Google Scholar 

  • Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM . (2000). Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11: 1555–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukas C, Sorensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM et al. (1999). Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401: 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Ma AH, Xia L, Desai SJ, Boucher DL, Guan Y, Shih HM et al. (2006). Male germ cell-associated kinase, a male-specific kinase regulated by androgen, is a coactivator of androgen receptor in prostate cancer cells. Cancer Res 66: 8439–8447.

    Article  CAS  PubMed  Google Scholar 

  • Matsushime H, Jinno A, Takagi N, Shibuya M . (1990). A novel mammalian protein kinase gene (mak) is highly expressed in testicular germ cells at and after meiosis. Mol Cell Biol 10: 2261–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A, Barry WT et al. (2009). Genomic strategy for targeting therapy in castration-resistant prostate cancer. J Clin Oncol 27: 2022–2029.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, Wang X, Xu K, Jin DY, Cheung AL, Tsao SW et al. (2001). Effect of p53 on centrosome amplification in prostate cancer cells. Biochim Biophys Acta 1541: 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Kytola S, Farnebo F, Wang N, Lui WO, Nupponen N et al. (1999). Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping. Cytogenet Cell Genet 87: 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J et al. (1991). Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). Embo J 10: 885–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfleger CM, Salic A, Lee E, Kirschner MW . (2001). Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev 15: 1759–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ . (2001). Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61: 2212–2219.

    CAS  PubMed  Google Scholar 

  • Reimann JD, Gardner BE, Margottin-Goguet F, Jackson PK . (2001). Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev 15: 3278–3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson D, He F, Pretlow T, Kung HJ . (1996). A tyrosine kinase profile of prostate carcinoma. Proc Natl Acad Sci USA 93: 5958–5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh M, Gary B, Song C, Said-Al-Naief N, Tousson A, Kraft A et al. (2003). Overexpression of the oncogenic kinase Pim-1 leads to genomic instability. Cancer Res 63: 8079–8084.

    CAS  PubMed  Google Scholar 

  • Ross KE, Cohen-Fix O . (2003). The role of Cdh1p in maintaining genomic stability in budding yeast. Genetics 165: 489–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shand RL, Gelmann EP . (2006). Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol 16: 123–131.

    Article  PubMed  Google Scholar 

  • Tribukait B . (1991). DNA flow cytometry in carcinoma of the prostate for diagnosis, prognosis and study of tumor biology. Acta Oncol 30: 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Di K, Zhang X, Han HY, Wong YC, Leung SC et al. (2008). Id-1 promotes chromosomal instability through modification of APC/C activity during mitosis in response to microtubule disruption. Oncogene 27: 4456–4466.

    Article  CAS  PubMed  Google Scholar 

  • Wasch R, Engelbert D . (2005). Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells. Oncogene 24: 1–10.

    Article  PubMed  Google Scholar 

  • Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, Jung K et al. (2004). Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate 60: 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Wohlbold L, Larochelle S, Liao JC, Livshits G, Singer J, Shokat KM et al. (2006). The cyclin-dependent kinase (CDK) family member PNQALRE/CCRK supports cell proliferation but has no intrinsic CDK-activating kinase (CAK) activity. Cell Cycle 5: 546–554.

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Robinson D, Ma AH, Chen HC, Wu F, Qiu Y et al. (2002). Identification of human male germ cell-associated kinase, a kinase transcriptionally activated by androgen in prostate cancer cells. J Biol Chem 277: 35422–35433.

    Article  CAS  PubMed  Google Scholar 

  • Zachariae W, Schwab M, Nasmyth K, Seufert W . (1998). Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282: 1721–1724.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Ching YP, Chun AC, Jin DY . (2003). Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J Biol Chem 278: 12530–12536.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Anthony Martinez for assisting the quantitative reverse transcriptase–PCR experiment. We thank Dr Robert P Fisher in Memorial Sloan-Kettering Cancer Center for kindly providing the CCRK constructs, Dr Ai-Hong Ma and Dr Yi Guan for initiating this study. Dr Jui-Ching Wu at National Taiwan University, Dr Melanie C Bradnam and Dr Yoshihiro Izumiya at UC Davis provided helpful comments. This work is supported by NIH grants DK526529, DK078243, CA150197 and DoD grant PC093350 (to HJ Kung), as well as the DoD Postdoctoral Training Award W81XWH-08-1-0138 (to LY Wang). We also acknowledge the support of Auburn Community Cancer Endowment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-J Kung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LY., Kung, HJ. Male germ cell-associated kinase is overexpressed in prostate cancer cells and causes mitotic defects via deregulation of APC/CCDH1. Oncogene 31, 2907–2918 (2012). https://doi.org/10.1038/onc.2011.464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.464

Keywords

This article is cited by

Search

Quick links