Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor

Abstract

The cell of origin of tumors and the factors determining the cell of origin remain unclear. In this study, a mouse model of precursor B acute lymphoblastic leukemia/lymphoma (pre-B ALL/LBL) was established by retroviral transduction of Myc genes (N-Myc or c-Myc) into mouse bone marrow cells. Hematopoietic stem cells (HSCs) exhibited the highest susceptibility to N-Myc-induced pre-B ALL/LBL versus lymphoid progenitors, myeloid progenitors and committed progenitor B cells. N-Myc was able to induce pre-B ALL/LBL directly from progenitor B cells in the absence of Ink4a and Arf. Arf was expressed higher in progenitor B cells than Ink4a. In addition, N-Myc induced pre-B ALL/LBL from Arf−/− progenitor B cells suggesting that Arf has a predominant role in determining the cell of origin of pre-B ALL/LBL. Tumor cells derived from Ink4a/Arf−/− progenitor B cells exhibited a higher rate of proliferation and were more chemoresistant than those derived from wild-type HSCs. Furthermore, the Mdm2 inhibitor Nutlin-3 restored p53 and induced massive apoptosis in mouse pre-B ALL/LBL cells derived from Ink4a/Arf−/− cells and human B-ALL cell lines lacking Ink4a and Arf expression, suggesting that Mdm2 inhibition may be a novel therapeutic approach to the treatment of Ink4a/Arf−/− B-ALL/LBL, such as is frequently found in Ph+ ALL and relapsed ALL. Collectively, these findings indicate that Ink4a and Arf are critical determining factors of the cell of origin and the therapeutic sensitivity of Myc-induced lymphoid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318: 533–538.

    Article  CAS  Google Scholar 

  • Ausserlechner MJ, Obexer P, Wiegers GJ, Hartmann BL, Geley S, Kofler R . (2001). The cell cycle inhibitor p16(INK4A) sensitizes lymphoblastic leukemia cells to apoptosis by physiologic glucocorticoid levels. J Biol Chem 276: 10984–10989.

    Article  CAS  Google Scholar 

  • Calabretta B, Perrotti D . (2004). The biology of CML blast crisis. Blood 103: 4010–4022.

    Article  CAS  Google Scholar 

  • Cano F, Pannel R, Follows GA, Rabbitts TH . (2008). Preclinical modeling of cytosine arabinoside response in Mll-Enl translocator mouse leukemias. Mol Cancer Ther 7: 730–735.

    Article  CAS  Google Scholar 

  • Cardone M, Kandilci A, Carella C, Nilsson JA, Brennan JA, Sirma S et al. (2005). The novel ETS factor TEL2 cooperates with Myc in B lymphomagenesis. Mol Cell Biol 25: 2395–2405.

    Article  CAS  Google Scholar 

  • Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11: 630–637.

    Article  CAS  Google Scholar 

  • Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. (2000). A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95: 1007–1013.

    CAS  Google Scholar 

  • Cobaleda C, Sanchez-Garcia I . (2009). B-cell acute lymphoblastic leukaemia: towards understanding its cellular origin. Bioessays 31: 600–609.

    Article  Google Scholar 

  • Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . (2004). Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104: 2919–2925.

    Article  CAS  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    Article  CAS  Google Scholar 

  • Gu L, Zhu N, Findley HW, Zhou M . (2008). MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia 22: 730–739.

    Article  CAS  Google Scholar 

  • Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. (2005). Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436: 807–811.

    Article  CAS  Google Scholar 

  • Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. (2008). Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319: 336–339.

    Article  CAS  Google Scholar 

  • Hotfilder M, Rottgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R et al. (2005). Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res 65: 1442–1449.

    Article  CAS  Google Scholar 

  • Hu Y, Smyth GK . (2009). ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347: 70–78.

    Article  CAS  Google Scholar 

  • Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H et al. (2004). Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21: 843–851.

    Article  CAS  Google Scholar 

  • Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . (1999). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13: 2678–2690.

    Article  CAS  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  CAS  Google Scholar 

  • Kawagoe H, Kandilci A, Kranenburg TA, Grosveld GC . (2007). Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res 67: 10677–10685.

    Article  CAS  Google Scholar 

  • Kojima K, Konopleva M, McQueen T, O'Brien S, Plunkett W, Andreeff M . (2006). Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108: 993–1000.

    Article  CAS  Google Scholar 

  • Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. (2005). MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106: 3150–3159.

    Article  CAS  Google Scholar 

  • le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A et al. (2008). In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14: 47–58.

    Article  CAS  Google Scholar 

  • Luo H, Li Q, O'Neal J, Kreisel F, Le Beau MM, Tomasson MH . (2005). c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 106: 2452–2461.

    Article  CAS  Google Scholar 

  • Meyer N, Penn LZ . (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8: 976–990.

    Article  CAS  Google Scholar 

  • Morita S, Kojima T, Kitamura T . (2000). Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7: 1063–1066.

    Article  CAS  Google Scholar 

  • Morse III HC, Anver MR, Fredrickson TN, Haines DC, Harris AW, Harris NL et al. (2002). Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100: 246–258.

    Article  CAS  Google Scholar 

  • Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. (2008a). Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322: 1377–1380.

    Article  CAS  Google Scholar 

  • Mullighan CG, Williams RT, Downing JR, Sherr CJ . (2008b). Failure of CDKN2A/B (INK4A/B-ARF)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. Genes Dev 22: 1411–1415.

    Article  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.

    Article  CAS  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346.

    Article  CAS  Google Scholar 

  • Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW . (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–2677.

    Article  CAS  Google Scholar 

  • Shimizu T, Ishikawa T, Sugihara E, Kuninaka S, Miyamoto T, Mabuchi Y et al. (2010). c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 29: 5687–5699.

    Article  CAS  Google Scholar 

  • Sugihara E, Kanai M, Saito S, Nitta T, Toyoshima H, Nakayama K et al. (2006). Suppression of centrosome amplification after DNA damage depends on p27 accumulation. Cancer Res 66: 4020–4029.

    Article  CAS  Google Scholar 

  • Tsuji K, Mizumoto K, Sudo H, Kouyama K, Ogata E, Matsuoka M . (2002). p53-independent apoptosis is induced by the p19ARF tumor suppressor. Biochem Biophys Res Commun 295: 621–629.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Visvader JE . (2011). Cells of origin in cancer. Nature 469: 314–322.

    Article  CAS  Google Scholar 

  • Wade M, Wang YV, Wahl GM . (2010). The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20: 299–309.

    Article  CAS  Google Scholar 

  • Wang PY, Young F, Chen CY, Stevens BM, Neering SJ, Rossi RM et al. (2008). The biologic properties of leukemias arising from BCR/ABL-mediated transformation vary as a function of developmental origin and activity of the p19ARF gene. Blood 112: 4184–4192.

    Article  CAS  Google Scholar 

  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al. (2004). c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18: 2747–2763.

    Article  CAS  Google Scholar 

  • Yasuda T, Sanjo H, Pages G, Kawano Y, Karasuyama H, Pouyssegur J et al. (2008). Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28: 499–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I Ishimatsu, Y Hata and S Suzuki for technical assistance, K Arai for help in the preparation of the manuscript, CJ Sherr (St Jude Children's Research Hospital) for providing Arf−/− mice, Dr A Kenny (Memorial Sloan-Kettering Cancer Center) for providing the N-Myc cDNA, Dr T Kitamura (The University of Tokyo) for providing the retroviral vector pMXs-IG and Plat-E cells and Dr A Iwama (Chiba University) for providing the Bmi1 cDNA. This work was supported by grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (HS) and the US National Institutes of Health CA55164, CA136411 and CA100632 (MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Saya.

Ethics declarations

Competing interests

Dr Andreeff’s work is supported by grants from the NIH and by Hoffmann-La Roche, Nutley, NJ.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugihara, E., Shimizu, T., Kojima, K. et al. Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor. Oncogene 31, 2849–2861 (2012). https://doi.org/10.1038/onc.2011.462

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.462

Keywords

This article is cited by

Search

Quick links