Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo

Abstract

Aberrant activation of Wingless-type (Wnt)/β-catenin signaling is widespread in human cervical cancer. However, the underlying mechanisms of Wnt activation and the therapeutic potential of Wnt inhibition remain largely unknown. Here, we demonstrate that the Wnt inhibitory factor 1 (WIF1), a secreted Wnt antagonist, is downregulated in all human primary cervical tumors and cell lines analyzed. Our data reveal that WIF1 downregulation occurs due to promoter hypermethylation and is an early event in cervical oncogenesis. WIF1 re-expression upon 5-aza-2′-deoxycytidine treatment or WIF1 gene transfer induces significant apoptosis and G2/M arrest, and inhibits cervical cancer cell proliferation in vitro. Consistent with this, treatment of established mice tumor xenografts with peritumoral WIF1 gene transfer results in a significant inhibition of cancer growth and invasion. WIF1 treatment causes a significant decrease in intracellular WNT1 and TCF-4 proteins revealing novel Wnt-regulatory mechanisms. Thus, WIF1 causes a major cellular re-distribution of β-catenin and a significant inhibition of the Wnt/β-catenin pathway in tumor cells, as documented by a remarkable reversion in the expression of Wnt/β-catenin transcriptional target genes (E-cadherin, c-Myc, cyclin D1, CD44 and VEGF). Consequently, multiple critical events in tumor progression and metastasis such as cell proliferation, angiogenesis and invasion were inhibited by WIF1. In addition, WIF1 modulated the expression of specific anti-apoptotic and apoptotic proteins, thereby inducing significant apoptosis in vivo. Our findings demonstrate for the first time that WIF1 downregulation by epigenetic gene silencing is an important mechanism of Wnt activation in cervical oncogenesis. Of major clinical relevance, we show that peritumoral WIF1 gene transfer reduces not only cancer growth but also invasion in well-established tumors. Therefore, our data provide novel mechanistic insights into the role of WIF1 in cervical cancer progression, and the important preclinical validation of WIF1 as a potent drug target in cervical cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abbasi AM, Chester KA, Talbot IC, Macpherson AS, Boxer G, Forbes A et al. (1993). CD44 is associated with proliferation in normal and neoplastic human colorectal epithelial cells. Eur J Cancer 29A: 1995–2002.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal ML, Agarwal A, Taylor WR, Stark GR . (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92: 8493–8497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn WS, Bae SM, Lee JM, Namkoong SE, Yoo JY, Seo YS et al. (2004). Anti-cancer effect of adenovirus p53 on human cervical cancer cell growth in vitro and in vivo. Int J Gynecol Cancer 14: 322–332.

    Article  CAS  PubMed  Google Scholar 

  • Ai L, Tao Q, Zhong S, Fields CR, Kim WJ, Lee MW et al. (2006). Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  • Bae DS, Cho SB, Kim YJ, Whang JD, Song SY, Park CS et al. (2001). Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol 81: 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J . (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121: 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Branca M, Giorgi C, Ciotti M, Santini D, Di Bonito L, Costa S et al. (2006). Down-regulation of E-cadherin is closely associated with progression of cervical intraepithelial neoplasia (CIN), but not with high-risk human papillomavirus (HPV) or disease outcome in cervical cancer. Eur J Gynaecol Oncol 27: 215–223.

    CAS  PubMed  Google Scholar 

  • Byun T, Karimi M, Marsh JL, Milovanovic T, Lin F, Holcombe RF . (2005). Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol 58: 515–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung MT, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH et al. (2009). Promoter methylation of SFRPs gene family in cervical cancer. Gynecol Oncol 112: 301–306.

    Article  CAS  PubMed  Google Scholar 

  • DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS et al. (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 151: 671–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG . (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145: 5439–5447.

    Article  CAS  PubMed  Google Scholar 

  • Gherghe CM, Duan J, Gong J, Rojas M, Klauber-Demore N, Majesky M et al. (2011). Wnt1 is a proangiogenic molecule, enhances human endothelial progenitor function, and increases blood flow to ischemic limbs in a HGF-dependent manner. FASEB J 25: 1836–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemann MT, Lowe SW . (2006). The p53-Bcl-2 connection. Cell Death Differ 13: 1256–1259.

    Article  CAS  PubMed  Google Scholar 

  • Horn LC, Fischer U, Raptis G, Bilek K, Hentschel B, Richter CE et al. (2006). Pattern of invasion is of prognostic value in surgically treated cervical cancer patients. Gynecol Oncol 103: 906–911.

    Article  PubMed  Google Scholar 

  • Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH et al. (1999). A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398: 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Huber AH, Weis WI . (2001). The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105: 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Jamora C, DasGupta R, Kocieniewski P, Fuchs E . (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422: 317–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CL, Lu D, Huang J, Basu A . (2002). Regulation of p53 stabilization by DNA damage and protein kinase C. Mol Cancer Ther 1: 861–867.

    CAS  PubMed  Google Scholar 

  • Jones M, Tussey L, Athanasou N, Jackson DG . (2000). Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J Biol Chem 275: 7964–7974.

    Article  CAS  PubMed  Google Scholar 

  • Kainz C, Kohlberger P, Tempfer C, Sliutz G, Gitsch G, Reinthaller A et al. (1995). Prognostic value of CD44 splice variants in human stage III cervical cancer. Eur J Cancer 31: 1706–1709.

    Article  Google Scholar 

  • Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M et al. (2009). Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119: 837–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami K, Hirata H, Yamamura S, Kikuno N, Saini S, Majid S et al. (2009). Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res 69: 8603–8610.

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Kypta R . (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116: 2627–2634.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, You L, Xu Z, Kuchenbecker K, Raz D, He B et al. (2007). Wnt inhibitory factor inhibits lung cancer cell growth. J Thorac Cardiovasc Surg 133: 733–737.

    Article  CAS  PubMed  Google Scholar 

  • Koskimaa HM, Kurvinen K, Costa S, Syrjänen K, Syrjänen S . (2010). Molecular markers implicating early malignant events in cervical carcinogenesis. Cancer Epidemiol Biomarkers Prev 19: 2003–2012.

    Article  CAS  PubMed  Google Scholar 

  • Laux H, Tomer R, Mader MT, Smida J, Budczies J, Kappler R et al. (2004). Tumor-associated E-cadherin mutations do not induce Wnt target gene expression, but affect E-cadherin repressors. Lab Invest 84: 1372–1386.

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Jo M, Rho SB, Park K, Yoo YN, Park J et al. (2009). Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int J Cancer 124: 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yuan J . (2008). Caspases in apoptosis and beyond. Oncogene 27: 6194–6206.

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, You L, Xu Z, He B, Yang CT, Chen JK et al. (2007). Wnt inhibitory factor-1 gene transfer inhibits melanoma cell growth. Hum Gene Ther 18: 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Linderholm BK, Lindahl T, Holmberg L, Klaar S, Lennerstrand J, Henriksson R et al. (2001). The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Res 61: 2256–2260.

    CAS  PubMed  Google Scholar 

  • Lu S, Zhang B, Wang Z . (2005). Expression of survivin, cyclin D1, p21(WAF1), caspase-3 in cervical cancer and its relation with prognosis. J Huazhong Univ Sci Technolog Med Sci 25: 78–81.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X . (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur SP, Mathur RS, Gray EA, Lane D, Underwood PG, Kohler M et al. (2005). Serum vascular endothelial growth factor C (VEGF-C) as a specific biomarker for advanced cervical cancer: Relationship to insulin-like growth factor II (IGF-II), IGF binding protein 3 (IGF-BP3) and VEGF-A [corrected]. Gynecol Oncol 98: 467–483.

    Article  CAS  PubMed  Google Scholar 

  • Mikels AJ, Nusse R . (2006). Wnts as ligands: processing, secretion and reception. Oncogene 25: 7461–7468.

    Article  CAS  PubMed  Google Scholar 

  • Nusse R . (2005). Wnt signaling in disease and in development. Cell Res 15: 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Orian-Rousseau V . (2010). CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F . (2006). Chapter 2: The burden of HPV-related cancers. Vaccine 24 (Suppl 3): S3/11–S3/25.

    Google Scholar 

  • Perez-Plasencia C, Duenas-Gonzalez A, Alatorre-Tavera B . (2008). Second hit in cervical carcinogenesis process: involvement of Wnt/beta catenin pathway. Int Arch Med 1: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phoophitphong T, Hanprasertpong J, Dechsukhum C, Geater A . (2007). Correlation of angiogenesis and recurrence-free survival of early stage cervical cancer patients undergoing radical hysterectomy with pelvic lymph node dissection. J Obstet Gynaecol Res 33: 840–848.

    Article  PubMed  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Queimado L, Obeso D, Hatfield MD, Yang Y, Thompson DM, Reis AMC . (2008). Dysregulation of Wnt pathway components in human salivary gland tumors. Arch Otolaryngol Head Neck Surg 134: 94–101.

    Article  PubMed  Google Scholar 

  • Robertson KD . (2001). DNA methylation, methyltransferases, and cancer. Oncogene 20: 3139–3155.

    Article  CAS  PubMed  Google Scholar 

  • Shinohara A, Yokoyama Y, Wan X, Takahashi Y, Mori Y, Takami T et al. (2001). Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix. Gynecol Oncol 82: 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Filho AL, Traiman P, Triginelli SA, Reis FM, Pedrosa MS, Miranda D et al. (2006). Association between CD31 expression and histopathologic features in stage IB squamous cell carcinoma of the cervix. Int J Gynecol Cancer 16: 757–762.

    Article  CAS  PubMed  Google Scholar 

  • Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K . (2005). Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 96: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Speiser P, Wanner C, Tempfer C, Mittelbock M, Hanzal E, Bancher-Todesca D et al. (1997). CD44 is an independent prognostic factor in early-stage cervical cancer. Int J Cancer 74: 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Simoneau AR, Liao WX, Yi G, Hope C, Liu F et al. (2009). WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther 8: 458–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Yamamoto H, Hirata T, Miyamoto N, Oki M, Nosho K et al. (2005). Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24: 7946–7952.

    Article  CAS  PubMed  Google Scholar 

  • Ueda M, Gemmill RM, West J, Winn R, Sugita M, Tanaka N et al. (2001). Mutations of the beta- and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer 85: 64–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urakami S, Shiina H, Enokida H, Kawakami T, Tokizane T, Ogishima T et al. (2006). Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 12: 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Uren A, Fallen S, Yuan H, Usubutun A, Kucukali T, Schlegel R et al. (2005). Activation of the canonical Wnt pathway during genital keratinocyte transformation: a model for cervical cancer progression. Cancer Res 65: 6199–6206.

    Article  PubMed  Google Scholar 

  • Vijayalakshmi N, Selvaluxmi G, Mahji U, Rajkumar T . (2002). C-myc oncoprotein expression and prognosis in patients with carcinoma of the cervix: an immunohistochemical study. Eur J Gynaecol Oncol 23: 135–138.

    CAS  PubMed  Google Scholar 

  • Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV et al. (2007). c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27: 1905–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154: 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissmann C, Wild P, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M et al. (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 201: 204–212.

    Article  CAS  PubMed  Google Scholar 

  • Woodman CB, Collins SI, Young LS . (2007). The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7: 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Aikawa M, Szeto W, Papkoff J . (1999). Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem Biophys Res Commun 263: 384–388.

    Article  CAS  PubMed  Google Scholar 

  • Yee D, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S et al. (2010). The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 9: 162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Toole BP, Stamenkovic I . (1997). Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 186: 1985–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y . (2009). Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 219: 3–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr Eric W Howard for kindly providing the pCI-blast vector. We are grateful to Dr Sripathi M Sureban and Dr Dharmalingam Subramaniam for their technical advice and graphic assistance. We also thank Mrs Geraldine A Chissoe and Mr Randal May (Advanced Immunohistochemistry and Morphology Core, OUHSC) for their technical assistance. We appreciate the helpful discussions of Dr Ileng Kumaran Ramachandran (CSHL) and Dr Sivakumar Ramadoss (UCLA). This work was supported by the Oklahoma Center for the Advancement of Science and Technology (LQ) (HR08-018). LQ holds a Presbyterian Health Foundation Endowed Chair in Otorhinolaryngology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Queimado.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website )

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, I., Thavathiru, E., Ramalingam, S. et al. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 31, 2725–2737 (2012). https://doi.org/10.1038/onc.2011.455

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.455

Keywords

This article is cited by

Search

Quick links