Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progression of BRAF-induced thyroid cancer is associated with epithelial–mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling

Abstract

Mice with thyroid-specific expression of oncogenic BRAF (Tg-Braf) develop papillary thyroid cancers (PTCs) that are locally invasive and have well-defined foci of poorly differentiated thyroid carcinoma (PDTC). To investigate the PTC–PDTC progression, we performed a microarray analysis using RNA from paired samples of PDTC and PTC collected from the same animals by laser capture microdissection. Analysis of eight paired samples revealed a profound deregulation of genes involved in cell adhesion and intracellular junctions, with changes consistent with an epithelial–mesenchymal transition (EMT). This was confirmed by immunohistochemistry, as vimentin expression was increased and E-cadherin lost in PDTC compared with adjacent PTC. Moreover, PDTC stained positively for phospho-Smad2, suggesting a role for transforming growth factor (TGF)β in mediating this process. Accordingly, TGFβ-induced EMT in primary cultures of thyroid cells from Tg-Braf mice, whereas wild-type thyroid cells retained their epithelial features. TGFβ-induced Smad2 phosphorylation, transcriptional activity and induction of EMT required mitogen-activated protein kinase (MAPK) pathway activation in Tg-Braf thyrocytes. Hence, tumor initiation by oncogenic BRAF renders thyroid cells susceptible to TGFβ-induced EMT, through a MAPK-dependent process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ball DW, Jin N, Rosen DM, Dackiw A, Sidransky D, Xing M et al. (2007). Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J Clin Endocrinol Metab 92: 4712–4718.

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300.

    Google Scholar 

  • Bravo SB, Pampin S, Cameselle-Teijeiro J, Carneiro C, Dominguez F, Barreiro F et al. (2003). TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation. Oncogene 22: 7819–7830.

    Article  CAS  Google Scholar 

  • Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al. (2005). Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.

    Article  Google Scholar 

  • Depoortere F, Pirson I, Bartek J, Dumont JE, Roger PP . (2000). Transforming growth factor beta(1) selectively inhibits the cyclic AMP-dependent proliferation of primary thyroid epithelial cells by preventing the association of cyclin D3-cdk4 with nuclear p27(kip1). Mol Biol Cell 11: 1061–1076.

    Article  CAS  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  Google Scholar 

  • Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R et al. (2008). BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93: 3943–3949.

    Article  CAS  Google Scholar 

  • Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP . (1993). High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91: 179–184.

    Article  CAS  Google Scholar 

  • Franco AT, Malaguarnera R, Refetoff S, Liao XH, Lundsmith E, Kimura S et al. (2011). Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci USA 108: 1615–1620.

    Article  CAS  Google Scholar 

  • Funaba M, Zimmerman CM, Mathews LS . (2002). Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 277: 41361–41368.

    Article  CAS  Google Scholar 

  • Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D et al. (2005). Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24: 6646–6656.

    Article  CAS  Google Scholar 

  • Gomis RR, Alarcon C, He W, Wang Q, Seoane J, Lash A et al. (2006). A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci USA 103: 12747–12752.

    Article  CAS  Google Scholar 

  • Guo J, Sartor M, Karyala S, Medvedovic M, Kann S, Puga A et al. (2004). Expression of genes in the TGF-beta signaling pathway is significantly deregulated in smooth muscle cells from aorta of aryl hydrocarbon receptor knockout mice. Toxicol Appl Pharmacol 194: 79–89.

    Article  CAS  Google Scholar 

  • Inoue Y, Imamura T . (2008). Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci 99: 2107–2112.

    Article  CAS  Google Scholar 

  • Jechlinger M, Grunert S, Beug H . (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. J Mammary Gland Biol Neoplasia 7: 415–432.

    Article  Google Scholar 

  • Kalluri R, Weinberg RA . (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.

    Article  CAS  Google Scholar 

  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA . (2003). High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63: 1454–1457.

    CAS  PubMed  Google Scholar 

  • Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH et al. (2005). Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65: 4238–4245.

    Article  CAS  Google Scholar 

  • Leboeuf R, Baumgartner JE, Benezra M, Malaguarnera R, Solit D, Pratilas CA et al. (2008). BRAFV600E mutation is associated with preferential sensitivity to mitogen-activated protein kinase inhibition in thyroid cancer cell lines. J Clin Endocrinol Metab 93: 2194–2201.

    Article  CAS  Google Scholar 

  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J et al. (2007). TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26: 3957–3967.

    Article  CAS  Google Scholar 

  • Lin X, Liang M, Feng XH . (2000). Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275: 36818–36822.

    Article  CAS  Google Scholar 

  • Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH . (2001). Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97: 324–326.

    Article  CAS  Google Scholar 

  • Massague J . (2008). TGFbeta in cancer. Cell 134: 215–230.

    Article  CAS  Google Scholar 

  • Montero-Conde C, Martin-Campos JM, Lerma E, Gimenez G, Martinez-Guitarte JL, Combalia N et al. (2008). Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 27: 1554–1561.

    Article  CAS  Google Scholar 

  • Morris III JC, Ranganathan G, Hay ID, Nelson RE, Jiang NS . (1988). The effects of transforming growth factor-beta on growth and differentiation of the continuous rat thyroid follicular cell line, FRTL-5. Endocrinology 123: 1385–1394.

    Article  CAS  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z . (2002). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372–1379.

    CAS  PubMed  Google Scholar 

  • Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI et al. (2003). Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88: 4393–4397.

    Article  CAS  Google Scholar 

  • Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F et al. (2003). BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88: 5399–5404.

    Article  CAS  Google Scholar 

  • Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133: 66–77.

    Article  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y . (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375.

    Article  CAS  Google Scholar 

  • Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M et al. (2009). Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69: 4885–4893.

    Article  CAS  Google Scholar 

  • Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M et al. (2009). The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 69: 8317–8325.

    Article  CAS  Google Scholar 

  • Ryder M, Ghossein RA, Ricarte-Filho JC, Knauf JA, Fagin JA . (2008). Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer 15: 1069–1074.

    Article  CAS  Google Scholar 

  • Saltman B, Singh B, Hedvat CV, Wreesmann VB, Ghossein R . (2006). Total parenteral nutrition in children and adolescents treated with high-dose chemotherapy followed by autologous haematopoietic transplants. Surgery 140: 899–906.

    Article  Google Scholar 

  • Sartor MA, Leikauf GD, Medvedovic M . (2009). LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25: 211–217.

    Article  CAS  Google Scholar 

  • Sartor MA, Mahavisno V, Keshamouni VG, Cavalcoli J, Wright Z, Karnovsky A et al. (2010). ConceptGen: a gene set enrichment and gene set relation mapping tool. Bioinformatics 26: 456–463.

    Article  CAS  Google Scholar 

  • Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD, Medvedovic M . (2006). Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinformatics 7: 1–17.

    Article  Google Scholar 

  • Savage ND, de BT, Walburg KV, Joosten SA, van MK, Geluk A et al. (2008). Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181: 2220–2226.

    Article  CAS  Google Scholar 

  • Seo SR, Lallemand F, Ferrand N, Pessah M, L'Hoste S, Camonis J et al. (2004). The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23: 3780–3792.

    Article  CAS  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: 1–25.

    Article  Google Scholar 

  • Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A et al. (2003). BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22: 4578–4580.

    Article  CAS  Google Scholar 

  • Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR et al. (2003). TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112: 1116–1124.

    Article  CAS  Google Scholar 

  • Tse JC, Kalluri R . (2007). Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101: 816–829.

    Article  CAS  Google Scholar 

  • Tsushima T, Arai M, Saji M, Ohba Y, Murakami H, Ohmura E et al. (1988). Effects of transforming growth factor-beta on deoxyribonucleic acid synthesis and iodine metabolism in porcine thyroid cells in culture. Endocrinology 123: 1187–1194.

    Article  CAS  Google Scholar 

  • Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S et al. (2007). Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104: 2803–2808.

    Article  CAS  Google Scholar 

  • Weinberg RA . (2008). Twisted epithelial-mesenchymal transition blocks senescence. Nat Cell Biol 10: 1021–1023.

    Article  CAS  Google Scholar 

  • Wiseman SM, Griffith OL, Deen S, Rajput A, Masoudi H, Gilks B et al. (2007). Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 142: 717–727.

    Article  CAS  Google Scholar 

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014.

    Article  CAS  Google Scholar 

  • Wrighton KH, Lin X, Feng XH . (2009). Phospho-control of TGF-beta superfamily signaling. Cell Res 19: 8–20.

    Article  CAS  Google Scholar 

  • Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL . (2004). Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 6: 603–610.

    Article  CAS  Google Scholar 

  • Xing M . (2005). BRAF mutation in thyroid cancer. Endocr Relat Cancer 12: 245–262.

    Article  CAS  Google Scholar 

  • Xu J, Lamouille S, Derynck R . (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19: 156–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH CA 50706, and a grant from the Margot Rosenberg Pulitzer Foundation. We are grateful to the MSKCC Genetically Engineered Mouse Phenotyping core facility and Dr Katia Manova of the MSKCC Molecular Cytology core for help with immunohistochemical experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J A Knauf or J A Fagin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauf, J., Sartor, M., Medvedovic, M. et al. Progression of BRAF-induced thyroid cancer is associated with epithelial–mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 30, 3153–3162 (2011). https://doi.org/10.1038/onc.2011.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.44

Keywords

This article is cited by

Search

Quick links