Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Breast cancer genome-wide association studies: there is strength in numbers

Abstract

Breast cancer (BC) is a heterogeneous disease that exhibits familial aggregation. Family linkage studies have identified high-penetrance genes, BRCA1, BRCA2, PTEN and TP53, that are responsible for inherited BC syndromes. Moreover, a combination of family-based and population-based approaches indicated that genes involved in DNA repair, such as CHEK2, ATM, BRIP and PALB2, are associated with moderate risk. Therefore, all of these known genes account for only 25% of the familial aggregation cases. Recently, genome wide association studies (GWAS) in BC revealed single nucleotide polymorphisms (SNPs) in five novel genes associated to susceptibility: TNRC9, FGFR2, MAP3K1, H19 and lymphocyte-specific protein 1 (LSP1). The most strongly associated SNP was in intron 2 of the FGFR2 gene that is amplified and overexpressed in 5–10% of BC. rs3803662 of TNRC9 gene has been shown to be the SNP with the strongest association with BC, in particular, this polymorphism seems to be correlated with bone metastases and estrogen receptor positivity. Relevant data indicate that SNP rs889312 in MAP3K1 is correlated with BC susceptibility only in BRCA2 mutation carriers, but is not associated with an increased risk in BRCA1 carriers. Finally, different SNPs in LSP1 and H19 and in minor genes probably were associated with BC risk. New susceptibility allelic variants associated with BC risk were recently discovered including potential causative genes involved in regulation of cell cycle, apoptosis, metabolism and mitochondrial functions. In conclusion, the identification of disease susceptibility loci may lead to a better understanding of the biological mechanism for BC to improve prevention, early detection and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adnane J, Gaudray P, Dionne CA, Crumley G, Jaye M, Schlessinger J et al. (1991). BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6: 659–663.

    CAS  PubMed  Google Scholar 

  • Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R et al. (2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL et al. (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72: 1117–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniou AC, Easton DF . (2006). Models of genetic susceptibility to breast cancer. Oncogene 25: 5898–5905.

    Article  CAS  PubMed  Google Scholar 

  • Antoniou AC, Sinilnikova OM, McGuffog L, Healey S, Nevanlinna H, Heikkinen T et al. (2009). Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 18: 4442–4456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniou AC, Spurdle AB, Sinilnikova OM, Healey S, Pooley KA, Schmutzler RK et al. (2008). Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 82: 937–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Braun R, Buetow K . (2011). Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data. PLoS Genet 7: e1002101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS et al. (2011). Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20: 3289–3303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerhan JR, Ansell SM, Fredericksen ZS, Kay NE, Liebow M, Call TG et al. (2007). Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 110: 4455–4463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D . (2006). Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66: 3903–3911.

    Article  CAS  PubMed  Google Scholar 

  • Dite GS, Jenkins MA, Southey MC, Hocking JS, Giles GG, McCredie MR et al. (2003). Familial risks, early-onset breast cancer, and BRCA1 and BRCA2 germline mutations. J Natl Cancer Inst 95: 448–457.

    Article  CAS  PubMed  Google Scholar 

  • Easton DF, Eeles RA . (2008). Genome-wide association studies in cancer. Hum Mol Genet 17: R109–R115.

    Article  CAS  PubMed  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzGerald MG, Marsh DJ, Wahrer D, Bell D, Caron S, Shannon KE et al. (1998). Germline mutations in PTEN are an infrequent cause of genetic predisposition to breast cancer. Oncogene 17: 727–731.

    Article  CAS  PubMed  Google Scholar 

  • Fu YP, Edvardsen H, Kaushiva A, Arhancet JP, Howe TM, Kohaar I et al. (2010). NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations. Mol Cancer 9: 113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Closas M, Chanock S . (2008). Genetic susceptibility loci for breast cancer by estrogen receptor status. Clin Cancer Res 14: 8000–8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA et al. (2008). Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4: e1000054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J et al. (2008). Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105: 4340–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto T, Shindo Y, Souri M, Baldwin GS . (1996). A new inhibitor of mitochondrial fatty acid oxidation. J Biochem 119: 1196–1201.

    Article  CAS  PubMed  Google Scholar 

  • Hirshfield KM, Rebbeck TR, Levine AJ . (2010). Germline mutations and polymorphisms in the origins of cancers in women. J Oncol 2010: 297671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollestelle A, Wasielewski M, Martens JW, Schutte M . (2010). Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev 20: 268–276.

    Article  CAS  PubMed  Google Scholar 

  • Houlston RS, Peto J . (2004). The search for low-penetrance cancer susceptibility alleles. Oncogene 23: 6471–6476.

    Article  CAS  PubMed  Google Scholar 

  • Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE et al. (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39: 870–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingersoll RG, Paznekas WA, Tran AK, Scott AF, Jiang G, Jabs EW . (2001). Fibroblast growth factor receptor 2 (FGFR2): genomic sequence and variations. Cytogenet Cell Genet 94: 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen VN, Borresen-Dale AL . (2008). SNPs associated with molecular subtypes of breast cancer: on the usefulness of stratified Genome-wide Association Studies (GWAS) in the identification of novel susceptibility loci. Mol Oncol 2: 12–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luqmani YA, Graham M, Coombes RC . (1992). Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer 66: 273–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani A, Gelmann EP . (2005). The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23: 4776–4789.

    Article  CAS  PubMed  Google Scholar 

  • Marafioti T, Jabri L, Pulford K, Brousset P, Mason DY, Delsol G . (2003). Leucocyte-specific protein (LSP1) in malignant lymphoma and Hodgkin's disease. Br J Haematol 120: 671–678.

    Article  CAS  PubMed  Google Scholar 

  • McInerney N, Colleran G, Rowan A, Walther A, Barclay E, Spain S et al. (2009). Low penetrance breast cancer predisposition SNPs are site specific. Breast Cancer Res Treat 117: 151–159.

    Article  PubMed  Google Scholar 

  • Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R et al. (2002). Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31: 55–59.

    Article  CAS  PubMed  Google Scholar 

  • Meyer KB, Maia AT, O'Reilly M, Teschendorff AE, Chin SF, Caldas C et al. (2008). Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol 6: e108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Moffa AB, Ethier SP . (2007). Differential signal transduction of alternatively spliced FGFR2 variants expressed in human mammary epithelial cells. J Cell Physiol 210: 720–731.

    Article  CAS  PubMed  Google Scholar 

  • Nordgard SH, Johansen FE, Alnaes GI, Naume B, Borresen-Dale AL, Kristensen VN . (2007). Genes harbouring susceptibility SNPs are differentially expressed in the breast cancer subtypes. Breast Cancer Res 9: 113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr N, Chanock S . (2008). Common genetic variation and human disease. Adv Genet 62: 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  PubMed  Google Scholar 

  • Peto J . (2002). Breast cancer susceptibility—A new look at an old model. Cancer Cell 1: 411–412.

    Article  CAS  PubMed  Google Scholar 

  • Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N et al. (1999). Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst 91: 943–949.

    Article  CAS  PubMed  Google Scholar 

  • Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA . (2002). Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31: 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A et al. (2007). PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39: 165–167.

    Article  CAS  PubMed  Google Scholar 

  • Ricol D, Cappellen D, El Marjou A, Gil-Diez-de-Medina S, Girault JM, Yoshida T et al. (1999). Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene 18: 7234–7243.

    Article  CAS  PubMed  Google Scholar 

  • Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lazaro C et al. (2009). Genome-wide linkage scan reveals three putative breast-cancer-susceptibility loci. Am J Hum Genet 84: 115–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Narvaez EA, Rosenberg L, Rotimi CN, Cupples LA, Boggs DA, Adeyemo A et al. (2010). Genetic variants on chromosome 5p12 are associated with risk of breast cancer in African American women: the Black Women's Health Study. Breast Cancer Res Treat 123: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidransky D, Tokino T, Helzlsouer K, Zehnbauer B, Rausch G, Shelton B et al. (1992). Inherited p53 gene mutations in breast cancer. Cancer Res 52: 2984–2986.

    CAS  PubMed  Google Scholar 

  • Smid M, Wang Y, Klijn JG, Sieuwerts AM, Zhang Y, Atkins D et al. (2006). Genes associated with breast cancer metastatic to bone. J Clin Oncol 24: 2261–2267.

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA et al. (2007). Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39: 865–869.

    Article  CAS  PubMed  Google Scholar 

  • Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF et al. (2008). Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40: 703–706.

    Article  CAS  PubMed  Google Scholar 

  • Tamaru N, Hishikawa Y, Ejima K, Nagasue N, Inoue S, Muramatsu M et al. (2004). Estrogen receptor-associated expression of keratinocyte growth factor and its possible role in the inhibition of apoptosis in human breast cancer. Lab Invest 84: 1460–1471.

    Article  CAS  PubMed  Google Scholar 

  • Tannheimer SL, Rehemtulla A, Ethier SP . (2000). Characterization of fibroblast growth factor receptor 2 overexpression in the qhuman breast cancer cell line SUM-52PE. Breast Cancer Res 2: 311–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A et al. (2005). Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97: 813–822.

    Article  CAS  PubMed  Google Scholar 

  • Thompson D, Easton D . (2004). The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia 9: 221–236.

    Article  PubMed  Google Scholar 

  • Wang X, Pankratz VS, Fredericksen Z, Tarrell R, Karaus M, McGuffog L et al. (2010). Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 19: 2886–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J et al. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature 378: 789–792.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gorry MC, Post JC, Ehrlich GD . (1999). Genomic organization of the human fibroblast growth factor receptor 2 (FGFR2) gene and comparative analysis of the human FGFR gene family. Gene 230: 69–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Russo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanale, D., Amodeo, V., Corsini, L. et al. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene 31, 2121–2128 (2012). https://doi.org/10.1038/onc.2011.408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.408

Keywords

This article is cited by

Search

Quick links