Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells

Abstract

PIM1 kinase and MYC are commonly co-expressed in human prostate cancer and synergize to induce rapidly progressing prostate cancer in mouse models. Deficiency of the Pim kinase genes is well tolerated in vivo, suggesting that PIM1 inhibition might offer an attractive therapeutic modality for prostate cancer, particularly for MYC-expressing tumors. Here we examine the molecular consequences of Pim1 and MYC overexpression in the prostate as well as the effects of depleting Pim1 in prostate carcinoma cells with high levels of MYC. Overexpression of Pim1 in the mouse prostate induces several pro-tumorigenic genetic programs including cell cycle genes and Myc-regulated genes before the induction of any discernible pathology. Pim1 depletion by RNA interference in mouse and human prostate cancer cells decreased cellular proliferation, survival, Erk signaling and tumorigenicity even when MYC levels were not significantly altered. These results indicate that PIM1 may be necessary to maintain tumorigenicity, and further support efforts aimed at developing PIM1 inhibitors for prostate cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdulkadir SA, Carbone JM, Naughton CK, Humphrey PA, Catalona WJ, Milbrandt J . (2001). Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma. Hum Pathol 32: 935–939.

    Article  CAS  PubMed  Google Scholar 

  • Abdulkadir SA, Carvalhal GF, Kaleem Z, Kisiel W, Humphrey PA, Catalona WJ et al. (2000). Tissue factor expression and angiogenesis in human prostate carcinoma. Hum Pathol 31: 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Berns A, Mikkers H, Krimpenfort P, Allen J, Scheijen B, Jonkers J . (1999). Identification and characterization of collaborating oncogenes in compound mutant mice. Cancer Res 59: 1773s–1777s.

    CAS  PubMed  Google Scholar 

  • Burton GR, Nagarajan R, Peterson CA, McGehee Jr RE . (2004). Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 329: 167–185.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R et al. (2009a). Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation. Am J Pathol 175: 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V . (2009b). Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood 114: 4150–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . (2005). Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 3: 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Davis AC, Wims M, Spotts GD, Hann SR, Bradley A . (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7: 671–682.

    Article  CAS  PubMed  Google Scholar 

  • Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. (2009). Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 206: 1957–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu JJ, Wang Z, Reeves R, Magnuson NS . (2009). PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene 28: 4261–4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS, Xing PX . (2009). PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. J Clin Invest 119: 362–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jager J, Gremeaux T, Gonzalez T, Bonnafous S, Debard C, Laville M et al. (2010). Tpl2 kinase is upregulated in adipose tissue in obesity and may mediate interleukin-1beta and tumor necrosis factor-{alpha} effects on extracellular signal-regulated kinase activation and lipolysis. Diabetes 59: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Roh M, Abdulkadir SA . (2010). Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity. BMC Cancer 10: 248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolch W . (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351 (Part 2): 289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird PW, van der Lugt NM, Clarke A, Domen J, Linders K, McWhir J et al. (1993). In vivo analysis of Pim-1 deficiency. Nucleic Acids Res 21: 4750–4755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiblich A, Cross SS, Catto JW, Pesce G, Hamdy FC, Rehman I . (2007). Human prostate cancer cells express neuroendocrine cell markers PGP 9.5 and chromogranin A. Prostate 67: 1761–1769.

    Article  CAS  PubMed  Google Scholar 

  • Magnuson NS, Wang Z, Ding G, Reeves R . (2010). Why target PIM1 for cancer diagnosis and treatment? Future Oncol 6: 1461–1478.

    Article  CAS  PubMed  Google Scholar 

  • Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. (2004). Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 24: 6104–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N . (2008). Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 68: 5076–5085.

    Article  CAS  PubMed  Google Scholar 

  • Mumenthaler SM, Ng PY, Hodge A, Bearss D, Berk G, Kanekal S et al. (2009). Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes. Mol Cancer Ther 8: 2882–2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al. (2005). Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280: 6130–6137.

    Article  CAS  PubMed  Google Scholar 

  • Roh M, Gary B, Song C, Said-Al-Naief N, Tousson A, Kraft A et al. (2003). Overexpression of the oncogenic kinase Pim-1 leads to genomic instability. Cancer Res 63: 8079–8084.

    CAS  PubMed  Google Scholar 

  • Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB et al. (2008). Potential roles for the PIM1 kinase in human cancer—a molecular and therapeutic appraisal. Eur J Cancer 44: 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . (1991). Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 11: 1176–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML et al. (2010). Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 29: 2477–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Z, Li X, Magnuson NS . (2008). Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27: 4809–4819.

    Article  CAS  PubMed  Google Scholar 

  • Zippo A, De Robertis A, Serafini R, Oliviero S . (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9: 932–944.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Robert Matusik, Simon Hayward, Vito Quaranta, Xiuping Yu and Fritz Parl for helpful discussions. Micrographs were taken from Cell Imaging Core at Vanderbilt University Medical Center. This work was supported by Grant RO1CA123484 from the NCI to SAA. while DG is supported by R01CA152601 from the NCI and BC093803 from the DOD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Abdulkadir.

Ethics declarations

Competing interests

The authors declare no conflict of interest. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Anderson, P., Luo, W. et al. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene 31, 1794–1803 (2012). https://doi.org/10.1038/onc.2011.371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.371

Keywords

This article is cited by

Search

Quick links