Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer

A Correction to this article was published on 13 March 2019

Abstract

Vascular endothelial growth factor (VEGF) has a central role in breast cancer development and progression, but the mechanisms that control its expression are poorly understood. Breast cancer tissue microarrays revealed an inverse correlation between the Forkhead transcription factor Forkhead box class O (FOXO)3a and VEGF expression. Using the lapatinib-sensitive breast cancer cell lines BT474 and SKBR3 as model systems, we tested the possibility that VEGF expression is negatively regulated by FOXO3a. Lapatinib treatment of BT474 or SKBR3 cells resulted in nuclear translocation and activation of FOXO3a, followed by a reduction in VEGF expression. Transient transfection and inducible expression experiments showed that FOXO3a represses the proximal VEGF promoter, whereas another Forkhead member, FOXM1, induces VEGF expression. Chromatin immunoprecipitation and oligonucleotide pull-down assays showed that both FOXO3a and FOXM1 bind a consensus Forkhead response element (FHRE) in the VEGF promoter. Upon lapatinib stimulation, activated FOXO3a displaces FOXM1 bound to the FHRE before recruiting histone deacetylase 2 (HDAC2) to the promoter, leading to decreased histones H3 and H4 acetylation, and concomitant transcriptional inhibition of VEGF. These results show that FOXO3a-dependent repression of target genes in breast cancer cells, such as VEGF, involves competitive displacement of DNA-bound FOXM1 and active recruitment of transcriptional repressor complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arden KC . (2008). FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27: 2345–2350.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Burgering BM . (2008). A brief introduction to FOXOlogy. Oncogene 27: 2258–2262.

    Article  CAS  PubMed  Google Scholar 

  • Calnan DR, Brunet A . (2008). The FoxO code. Oncogene 27: 2276–2288.

    Article  CAS  PubMed  Google Scholar 

  • Ciardiello F . (2005). Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 1: 221–234.

    Article  CAS  PubMed  Google Scholar 

  • Davie JR, Candido EP . (1978). Acetylated histone H4 is preferentially associated with template-active chromatin. Proc Natl Acad Sci USA 75: 3574–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis R, Singh KP, Kurzrock R, Shankar S . (2009). Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncol Rep 22: 1473–1478.

    CAS  PubMed  Google Scholar 

  • Delpuech O, Griffiths B, East P, Essafi A, Lam EW, Burgering B et al. (2007). Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression. Mol Cell Biol 27: 4917–4930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M et al. (2010). Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model. BMC Cancer 10: 188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. (2005). Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24: 2317–2329.

    Article  CAS  PubMed  Google Scholar 

  • Essafi A, Gomes AR, Pomeranz KM, Zwolinska AK, Varshochi R, McGovern UB et al. (2009). Studying the subcellular localization and DNA-binding activity of FoxO transcription factors, downstream effectors of PI3K/Akt. Methods Mol Biol 462: 201–211.

    CAS  PubMed  Google Scholar 

  • Fernandez de Mattos S, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS et al. (2004). FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 24: 10058–10071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez de Mattos S, Villalonga P, Clardy J, Lam EW . (2008). FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol Cancer Ther 7: 3237–3246.

    Article  CAS  PubMed  Google Scholar 

  • Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP et al. (1998). Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 51: 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB et al. (2009). FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol 35: 57–68.

    CAS  PubMed  Google Scholar 

  • Fu Z, Tindall DJ . (2008). FOXOs, cancer and regulation of apoptosis. Oncogene 27: 2312–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K et al. (2004). Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 279: 34741–34749.

    Article  CAS  PubMed  Google Scholar 

  • Gomes AR, Brosens JJ, Lam EW . (2008). Resist or die: FOXO transcription factors determine the cellular response to chemotherapy. Cell Cycle 7: 3133–3136.

    Article  CAS  PubMed  Google Scholar 

  • Hegde PS, Rusnak D, Bertiaux M, Alligood K, Strum J, Gagnon R et al. (2007). Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther 6: 1629–1640.

    Article  CAS  PubMed  Google Scholar 

  • Heist RS, Zhai R, Liu G, Zhou W, Lin X, Su L et al. (2008). VEGF polymorphisms and survival in early-stage non-small-cell lung cancer. J Clin Oncol 26: 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Ho KK, Myatt SS, Lam EW . (2008). Many forks in the path: cycling with FoxO. Oncogene 27: 2300–2311.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Tindall DJ . (2007). Dynamic FoxO transcription factors. J Cell Sci 120: 2479–2487.

    Article  CAS  PubMed  Google Scholar 

  • Hui RC, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS et al. (2008a). Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther 7: 670–678.

    Article  CAS  PubMed  Google Scholar 

  • Hui RC, Gomes AR, Constantinidou D, Costa JR, Karadedou CT, Fernandez de Mattos S et al. (2008b). The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol Cell Biol 28: 5886–5898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikezoe T, Nishioka C, Tasaka T, Yang Y, Komatsu N, Togitani K et al. (2006a). The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther 5: 2522–2530.

    Article  CAS  PubMed  Google Scholar 

  • Ikezoe T, Yang Y, Nishioka C, Bandobashi K, Nakatani H, Taguchi T et al. (2006b). Effect of SU11248 on gastrointestinal stromal tumor-T1 cells: enhancement of growth inhibition via inhibition of 3-kinase/Akt/mammalian target of rapamycin signaling. Cancer Sci 97: 945–951.

    Article  CAS  PubMed  Google Scholar 

  • Jain L, Vargo CA, Danesi R, Sissung TM, Price DK, Venzon D et al. (2009). The role of vascular endothelial growth factor SNPs as predictive and prognostic markers for major solid tumors. Mol Cancer Ther 8: 2496–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitadai Y . (2010). Angiogenesis and lymphangiogenesis of gastric cancer. J Oncol 2010: 468725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo N, Tsukuda M, Ishiguro Y, Kimura M, Fujita K, Sakakibara A et al. (2010). Antitumor effects of lapatinib (GW572016), a dual inhibitor of EGFR and HER-2, in combination with cisplatin or paclitaxel on head and neck squamous cell carcinoma. Oncol Rep 23: 957–963.

    Article  CAS  PubMed  Google Scholar 

  • Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC et al. (2007). The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther 6: 3169–3179.

    Article  CAS  PubMed  Google Scholar 

  • Kwok JM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EW . (2008). Thiostrepton selectively targets breast cancer cells through inhibition of FOXM1 expression. Mol Cancer Ther 7: 2022–2032.

    Article  CAS  PubMed  Google Scholar 

  • Labied S, Kajihara T, Madureira PA, Fusi L, Jones MC, Higham JM et al. (2006). Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol Endocrinol 20: 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Lam EW, Francis RE, Petkovic M . (2006). FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 34: 722–726.

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Youn SW, Kim JY, Park KW, Hwang CI, Park WY et al. (2008). FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-kappaB. Arterioscler Thromb Vasc Biol 28: 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Lentzsch S, Chatterjee M, Gries M, Bommert K, Gollasch H, Dorken B et al. (2004). PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 18: 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  • Littler DR, Alvarez-Fernandez M, Stein A, Hibbert RG, Heidebrecht T, Aloy P et al. (2010). Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res 38: 4527–4538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohela M, Bry M, Tammela T, Alitalo K . (2009). VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21: 154–165.

    Article  CAS  PubMed  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC . (2008). OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 14: 219–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makrilia N, Lappa T, Xyla V, Nikolaidis I, Syrigos K . (2009). The role of angiogenesis in solid tumours: an overview. Eur J Intern Med 20: 663–671.

    Article  CAS  PubMed  Google Scholar 

  • Margolin K . (2002). Inhibition of vascular endothelial growth factor in the treatment of solid tumors. Curr Oncol Rep 4: 20–28.

    Article  PubMed  Google Scholar 

  • McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS et al. (2009). Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8: 582–591.

    Article  CAS  PubMed  Google Scholar 

  • Montemurro F, Valabrega G, Aglietta M . (2007). Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin Biol Ther 7: 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Myatt SS, Lam EW . (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7: 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Nelson MH, Dolder CR . (2006). Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Nordigarden A, Kraft M, Eliasson P, Labi V, Lam EW, Villunger A et al. (2009). BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor-induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3. Blood 113: 2302–2311.

    Article  PubMed  Google Scholar 

  • Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A . (2008). S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455: 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Sakamoto H, Tsuji-Tamura K, Furuyama T, Ogawa M . (2009). Foxo1 is essential for in vitro vascular formation from embryonic stem cells. Biochem Biophys Res Commun 390: 861–866.

    Article  CAS  PubMed  Google Scholar 

  • Pytel D, Sliwinski T, Poplawski T, Ferriola D, Majsterek I . (2009). Tyrosine kinase blockers: new hope for successful cancer therapy. Anticancer Agents Med Chem 9: 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Reedquist KA, Ludikhuize J, Tak PP . (2006). Phosphoinositide 3-kinase signalling and FoxO transcription factors in rheumatoid arthritis. Biochem Soc Trans 34: 727–730.

    Article  CAS  PubMed  Google Scholar 

  • Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N et al. (2006). A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1: 780–790.

    Article  CAS  PubMed  Google Scholar 

  • Schneider BP, Sledge Jr GW . (2007). Drug insight: VEGF as a therapeutic target for breast cancer. Nat Clin Pract Oncol 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Unterman TG, Shankar S . (2010). FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337: 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. (2003). FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278: 49795–49805.

    Article  CAS  PubMed  Google Scholar 

  • Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ et al. (2006). Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 66: 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Wakeling AE . (2002). Epidermal growth factor receptor tyrosine kinase inhibitors. Curr Opin Pharmacol 2: 382–387.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Bando H, Mori T, Takahashi K, Matsumoto H, Yasutome M et al. (2007). Overexpression of soluble vascular endothelial growth factor receptor 1 in colorectal cancer: association with progression and prognosis. Cancer Sci 98: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R et al. (2007). ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117: 2051–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K et al. (2008). FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68: 8733–8742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Cancer Research UK (M Petkovic, KK Ho and EW-F Lam), Breast Cancer Campaign (EW-F Lam), the Portuguese Science and Technology Foundation (FCT; AR Gomes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E W-F Lam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karadedou, C., Gomes, A., Chen, J. et al. FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer. Oncogene 31, 1845–1858 (2012). https://doi.org/10.1038/onc.2011.368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.368

Keywords

This article is cited by

Search

Quick links