Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression

Abstract

Despite 35 years of clinical trials, there is little improvement in 1-year survival rates for patients with metastatic melanoma, and the disease is essentially untreatable if not cured surgically. The paucity of chemotherapeutic agents that are effective for treating metastatic melanoma indicates a dire need to develop new therapies. Here, we found a previously unrecognized role for c-Abl and Arg in melanoma progression. We demonstrate that the kinase activities of c-Abl and Arg are elevated in primary melanomas (60%), in a subset of benign nevi (33%) and in some human melanoma cell lines. Using siRNA and pharmacological approaches, we show that c-Abl/Arg activation is functionally relevant because it is requiredfor melanoma cell proliferation, survival and invasion. Significantly, we identify the mechanism by which activated c-Abl promotes melanoma invasion by showing that it transcriptionally upregulates matrix metalloproteinase-1 (MMP-1), and using rescue approaches we demonstrate that c-Abl promotes invasion through a STAT3 → MMP-1 pathway. Additionally, we show that c-Abl and Arg are not merely redundant, as active Arg drives invasion in a STAT3-independent manner, and upregulates MMP-3 and MT1–MMP, in addition to MMP-1. Most importantly, c-Abl and Arg not only promote in vitro processes important for melanoma progression, but also promote metastasis in vivo, as inhibition of c-Abl/Arg kinase activity with the c-Abl/Arg inhibitor, nilotinib, dramatically inhibits metastasis in a mouse model. Taken together, these data identify c-Abl and Arg as critical, novel, drug targets in metastatic melanoma, and indicate that nilotinib may be useful in preventing metastasis in patients with melanomas harboring active c-Abl and Arg.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allington TM, Galliher-Beckley AJ, Schiemann WP . (2009). Activated Abl kinase inhibits oncogenic transforming growth factor-beta signaling and tumorigenesis in mammary tumors. FASEB J 23: 4231–4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allington TM, Schiemann WP . (2011). The cain and Abl of epithelial–mesenchymal transition and transforming growth factor-beta in mammary epithelial cells. Cells Tissues Organs 193: 98–113.

    Article  CAS  PubMed  Google Scholar 

  • Bachmeier BE, Albini A, Vene R, Benelli R, Noonan D, Weigert C et al. (2005). Cell density-dependent regulation of matrix metalloproteinase and TIMP expression in differently tumorigenic breast cancer cell lines. Exp Cell Res 305: 83–98.

    Article  CAS  PubMed  Google Scholar 

  • Berwick M, Erdei E, Hay J . (2009). Melanoma epidemiology and public health. Dermatol Clin 27: 205–214, viii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn JS, Liu I, Coon CI, Brinckerhoff CE . (2009). A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene 28: 4237–4248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle SN, Michaud GA, Schweitzer B, Predki PF, Koleske AJ . (2007). A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation. Curr Biol 17: 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Brinckerhoff CE, Rutter JL, Benbow U . (2000). Interstitial collagenases as markers of tumor progression. Clin Cancer Res 6: 4823–4830.

    CAS  PubMed  Google Scholar 

  • Candelaria M, de la Garza J, Duenas-Gonzalez A . (2005). A clinical and biological overview of gastrointestinal stromal tumors. Med Oncol 22: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Clark Jr WH, Elder DE, Guerry D 4th, Epstein MN, Greene MH, Van Horn M . (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 15: 1147–1165.

    Article  PubMed  Google Scholar 

  • Deininger MW . (2008). Nilotinib. Clin Cancer Res 14: 4027–4031.

    Article  CAS  PubMed  Google Scholar 

  • DeMatteo RP . (2009). Nanoneoadjuvant therapy of gastrointestinal stromal tumor (GIST). Ann Surg Oncol 16: 799–800.

    Article  PubMed  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C . (2010). Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803: 3–19.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363: 809–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlan A, Stagni V, Hussain A, Richelme S, Conti F, Prodosmo A et al. (2011). Abl interconnects oncogenic Met and p53 core pathways in cancer cells. Cell Death Differ (e-pub ahead of print).

    Article  CAS  Google Scholar 

  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363: 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann UB, Kauczok-Vetter CS, Houben R, Becker JC . (2009). Overexpression of the KIT/SCF in uveal melanoma does not translate into clinical efficacy of imatinib mesylate. Clin Cancer Res 15: 324–329.

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Murata T, Suzuki T, Shindoh M, Nakajima K, Imai K et al. (2006). Requirement of STAT3 activation for maximal collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer cells. Oncogene 25: 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  • Kabbarah O, Chin L . (2005). Revealing the genomic heterogeneity of melanoma. Cancer Cell 8: 439–441.

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Kumar SM, Xu X . (2010). Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells. Arch Pathol Lab Med 134: 1740–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kortylewski M, Jove R, Yu H . (2005). Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 24: 315–327.

    Article  CAS  PubMed  Google Scholar 

  • le Coutre P, Kreuzer KA, Pursche S, Bonin M, Leopold T, Baskaynak G et al. (2004). Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53: 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma Q, Wang J, Liu X, Yang Y, Zhao H et al. (2010). c-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein galectin-3. Cell Death Differ 17: 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Arlinghaus R . (2008). Activated c-Abl tyrosine kinase in malignant solid tumors. Oncogene 27: 4385–4391.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Sun T, Ji L, Deng W, Roth J, Minna J et al. (2007). Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1. Oncogene 26: 6989–6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K, Baritaki S, Militello L, Malaponte G, Bevelacqua Y, Bonavida B . (2010). The role of B-RAF mutations in melanoma and the induction of EMT via dysregulation of the NF-kappaB/Snail/RKIP/PTEN circuit. Genes Cancer 1: 409–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mader CC, Oser M, Magalhaes MA, Bravo-Cordero JJ, Condeelis J, Koleske AJ et al. (2011). An EGFR–Src–Arg–cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 71: 1730–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T et al. (2003). Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95: 1878–1890.

    Article  CAS  PubMed  Google Scholar 

  • Mayorga ME, Sanchis D, Perez de Santos AM, Velasco A, Dolcet X, Casanova JM et al. (2006). Antiproliferative effect of STI571 on cultured human cutaneous melanoma-derived cell lines. Melanoma Res 16: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Mouawad R, Sebert M, Michels J, Bloch J, Spano JP, Khayat D . (2009). Treatment for metastatic malignant melanoma: old drugs and new strategies. Crit Rev Oncol Hematol 74: 27–39.

    Article  PubMed  Google Scholar 

  • Nawrocki Raby B, Polette M, Gilles C, Clavel C, Strumane K, Matos M et al. (2001). Quantitative cell dispersion analysis: new test to measure tumor cell aggressiveness. Int J Cancer 93: 644–652.

    Article  CAS  PubMed  Google Scholar 

  • Noren NK, Foos G, Hauser CA, Pasquale EB . (2006). The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat Cell Biol 8: 815–825.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Kawamura T, Furuhashi M, Tsukamoto K, Shimada S . (2008). Improving chemotherapeutic drug penetration in melanoma by imatinib mesylate. J Dermatol Sci 51: 190–199.

    Article  CAS  PubMed  Google Scholar 

  • Pendergast AM . (2001). BCR-ABL protein domain, function, and signaling. In: Carella AM, Daley GQ, Eaves CJ, Goldman JM, Helmann R (eds). Chronic Myeloid Leukaemia: Biology and Treatment. Martin Dunitz Ltd.: London, pp 19–39.

    Google Scholar 

  • Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F, Witte ON . (1991). Evidence for regulation of the human Abl tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci U S A 88: 5927–5931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plattner R, Irvin BJ, Guo S, Blackburn K, Kazlauskas A, Abraham RT et al. (2003). A new link between the c-Abl tyrosine kinase and phosphoinositide signaling via PLC-γ1. Nat Cell Biol 5: 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Plattner R, Kadlec L, DeMali KA, Kazlauskas A, Pendergast AM . (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13: 2400–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD . (2007). MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104: 13–19.

    Article  PubMed  Google Scholar 

  • Redondo P, Lloret P, Andreu EJ, Inoges S . (2004). Imatinib mesylate in cutaneous melanoma. J Invest Dermatol 123: 1208–1209.

    Article  CAS  PubMed  Google Scholar 

  • Santos FP, Ravandi F . (2009). Advances in treatment of chronic myelogenous leukemia—new treatment options with tyrosine kinase inhibitors. Leuk Lymphoma 50 (Suppl 2): 16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satzger I, Kuttler U, Volker B, Schenck F, Kapp A, Gutzmer R . (2010). Anal mucosal melanoma with KIT-activating mutation and response to imatinib therapy—case report and review of the literature. Dermatology 220: 77–81.

    Article  PubMed  Google Scholar 

  • Shepherd C, Puzanov I, Sosman JA . (2010). B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep 12: 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Singer CF, Hudelist G, Lamm W, Mueller R, Czerwenka K, Kubista E . (2004). Expression of tyrosine kinases in human malignancies as potential targets for kinase-specific inhibitors. Endocr Relat Cancer 11: 861–869.

    Article  CAS  PubMed  Google Scholar 

  • Sirvent A, Benistant C, Roche S . (2008). Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol Cell 100: 617–631.

    Article  CAS  PubMed  Google Scholar 

  • Smalley KS, Nathanson KL, Flaherty KT . (2009). Genetic subgrouping of melanoma reveals new opportunities for targeted therapy. Cancer Res 69: 3241–3244.

    Article  CAS  PubMed  Google Scholar 

  • Smith-Pearson PS, Greuber EK, Yogalingam G, Pendergast AM . (2010). Abl kinases are required for invadopodia formation and chemokine-induced invasion. J Biol Chem 285: 40201–40211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan D, Kaetzel DM, Plattner R . (2009). Reciprocal regulation of Abl and receptor tyrosine kinases. Cell Signal 21: 1143–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan D, Plattner R . (2006). Activation of abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66: 5648–5655.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan D, Sims JT, Plattner R . (2008). Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene 27: 1095–1105.

    Article  CAS  PubMed  Google Scholar 

  • Tsareva SA, Moriggl R, Corvinus FM, Wiederanders B, Schutz A, Kovacic B et al. (2007). Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. Neoplasia 9: 279–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugurel S, Hildenbrand R, Zimpfer A, La Rosee P, Paschka P, Sucker A et al. (2005). Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer 92: 1398–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watabe T, Yoshida K, Shindoh M, Kaya M, Fujikawa K, Sato H et al. (1998). The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int J Cancer 77: 128–137.

    Article  CAS  PubMed  Google Scholar 

  • Yogalingam G, Pendergast AM . (2008). Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components. J Biol Chem 283: 35941–35953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Patty Cross, J Anthony Brandon, Holly Bennett and Jennifer Strange for assistance with IHC, IVIS imaging, isolation of GST–STAT3 and cell sorting, respectively; John D’Orazio for primary melanocytes; Meenhard Herlyn for WM melanoma cell lines and for genotyping WM cell lines; Suyan Huang for A375; Fernando deCastro for IHC advice and Paul Manley (Novartis, Switzerland) for STI571 and nilotinib, and advice regarding their use. This work was supported by NIH/NCI grant 1R01CA116784.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Plattner.

Ethics declarations

Competing interests

Dr Plattner's and Dr Kaetzel's work are supported by NIH CA116784 and CA83237, respectively. All of the other authors declare no potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Fiore, L., Sims, J. et al. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. Oncogene 31, 1804–1816 (2012). https://doi.org/10.1038/onc.2011.361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.361

Keywords

This article is cited by

Search

Quick links