Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis

Abstract

WNT, RAS or phosphoinositide 3-kinase signaling pathways control specific stages of ovarian follicular development. To analyze the functional interactions of these pathways in granulosa cells during follicular development in vivo, we generated specific mutant mouse models. Stable activation of the WNT signaling effector β-catenin (CTNNB1) in granulosa cells results in the formation of premalignant lesions that develop into granulosa cell tumors (GCTs) spontaneously later in life or following targeted deletion of the tumor suppressor gene Pten. Conversely, expression of oncogenic KRASG12D dramatically arrests proliferation, differentiation and apoptosis in granulosa cells, and consequently, small abnormal follicle-like structures devoid of oocytes accumulate in the ovary. Because of the potent anti-proliferative effects of KRASG12D in granulosa cells, we sought to determine whether KRASG12D would block precancerous lesion and tumor formation in follicles of the CTNNB1-mutant mice. Unexpectedly, transgenic Ctnnb1;Kras-mutant mice exhibited increased GC proliferation, decreased apoptosis and impaired differentiation and developed early-onset GCTs leading to premature death in a manner similar to the Ctnnb1;Pten-mutant mice. Microarray and reverse transcription–PCR analyses revealed that gene regulatory processes induced by CTNNB1 were mostly enhanced by either KRAS activation or Pten loss in remarkably similar patterns and degree. The concomitant activation of CTNNB1 and KRAS in Sertoli cells also caused testicular granulosa cell tumors that showed gene expression patterns that partially overlapped those observed in GCTs of the ovary. Although the mutations analyzed herein have not yet been linked to adult GCTs in humans, they may be related to juvenile GCTs or to tumors in other tissues where CTNNB1 is mutated. Importantly, the results provide strong evidence that CTNNB1 is the driver in these contexts and that KRASG12D and Pten loss promote the program set in motion by the CTNNB1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  • Ashkenazi H, Cao X, Popliker M, Conti M, Tsafriri A . (2005). Epidermal growth factor family members: endogenous mediators of the ovulatory process. Endocrinology 146: 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Boerboom D, Paquet M, Hsieh M, Liu J, Jamin SP, Behringer RR et al. (2005). Misregulated Wnt/b-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res 65: 9206–9215.

    Article  CAS  PubMed  Google Scholar 

  • Boerboom D, White LD, Dalle S, Courty J, Richards JS . (2006). Dominant-stable-cateni b-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell model. Cancer Res 66: 1964–1973.

    Article  CAS  PubMed  Google Scholar 

  • Boyer A, Goff AK, Boerboo D . (2009a). WNT signaling in ovarian follicle biology and tumorigenesis. Trends in Endocrinol Metab 21: 25–32.

    Article  Google Scholar 

  • Boyer A, Hermo L, paquet M, Robaire B, Boerboom D . (2008). Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in Sertoli cells. Biol Reprod 79: 2062–2072.

    Article  Google Scholar 

  • Boyer A, Lapointe E, Zheng X, Cowan RG, Quirk SM, DeMayo FJ et al. (2010). WNT4 is required for normal ovarian follicle development and female fertility. FASEB J 24: 2010–3025.

    Article  Google Scholar 

  • Boyer A, Paquet M, Lague M-N, Hermo L, Boerboom D . (2009b). Dysregulation of WNT/CTNNB1 and PI3K/AKT signaling in testicular stromal cells causes granulosa cell tumors of the testis. Carcinogenesis 30: 869–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breloer M, Fleischer B . (2008). CD83 regulates lymphocyte maturation, activation and homeostasis. Trends Immunol 29: 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Broad KD, Curley JP, Keveme EB . (2009). Increased apoptosis during neonatal brain development underlies the adult behavioral deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3). Dev Neurobiol 69: 314–325.

    Article  CAS  PubMed  Google Scholar 

  • Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T et al. (2010). ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumors. Nature 467: 849–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti M, Hsieh M, Park J-Y, Su Y-Q . (2005). Role of the EGF network in ovarian follicles. Mol Endocrinol 20: 715–723.

    Article  PubMed  Google Scholar 

  • Dilworth JP . (1991). Non-germ cell tumors of testis. Urology 37: 399–417.

    Article  CAS  PubMed  Google Scholar 

  • Drews-Elger K, Ortells MC, Rao A, Lopez-Rodriguez C, Aramburu J . (2009). The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cell exposed to hypertonic stress. PLoS One 4: e5245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edson MA, Nalam RL, Clementi C, Franco HL, Demayo FJ, Lyons KM et al. (2010). Granulosa cell-expressed BMPR1A and BMPR1B have unique functions in regulating fertility but act redundantly to suppress ovarian tumor development. Mol Endocrinol 24: 1251–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eo J, Han K, Murphy MK, Song H, Lim HJ . (2008). Etv5, an ETS transcription factor, is expressed in granulosa and cumulus cells and serves as a transcriptional regulator of the cyclooxygenase-2. J Endocrinol 198: 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Fan HY, Richards JS . (2010). Minireview: physiological and pathological actions of RAS in the ovary. Mol Endocrinol 24: 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Fan HY, Liu Z, Richards JS . (2008a). Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol 22: 2128–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ et al. (2009a). Cell type specific targeted mutation of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult in ovarian surface epithelial cells. Cancer Res 69: 6463–6472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM et al. (2009b). MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324: 938–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HY, O'Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS . (2010). Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol 24: 1794–1804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan HY, Shimada M, Liu Z, Cahill N, Noma N, Wu Y et al. (2008b). Selective expression of KrasG12D in granulosa cells of the mouse ovary causes defects in follicular development and ovulation. Development 135: 2127–2137.

    Article  CAS  PubMed  Google Scholar 

  • Fellenberg J, Lehner B, Witte D . (2010). Silencing of the UCHL1 gene in giant cell tumor of bone. Int J Cancer 127: 1804–1812.

    Article  CAS  PubMed  Google Scholar 

  • Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER, Clyne CD . (2010). Aromatase is a direct target of FOXL2:C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One 5: e14389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, Karmazin J et al. (2009). Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol 9: 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS . (2000). FSH stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A-kinase independent signaling in granulosa cells. Mol Endocrinol 14: 1283–1300.

    Article  CAS  PubMed  Google Scholar 

  • Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM . (2010). Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/RAC1 signaling pathway in invadopodia formation. Cancer Res 70: 4634–4643.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich MC, Corless CL . (2010). Cancer: oncogenes in context. Nature 467: 796–797.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Gonzalez I, Gonzalez-Robayna IJ, Shimada M, Wayne CM, Ochsner SA, White L et al. (2006). Gene expression profiles of cumulus cell oocyte complexes (COCs) during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Mol Endocrinol 20: 1300–1321.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh M, Conti M . (2005). G-protein-coupled receptor signaling and the EGF network in endocrine systems. Trends Endocrinol Metab 16: 3320–3326.

    Article  Google Scholar 

  • Hsieh M, Lee DC, Panigone S, Horner K, Chen R, Threadgill DW et al (2007). Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol 27: 1914–1924.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Foreman O, Perkins SL, Witzig TE, Miles RR, van Deursen J et al. (2010). The de-ubiquitinase UCH-L1, is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia 24: 1641–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  PubMed  Google Scholar 

  • Jamieson S, Butzow R, andersson N, alexiadis M, Unkila-Kallio L, Heikinheimo M et al. (2010). The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod Pathol 23: 1477–1485.

    Article  CAS  PubMed  Google Scholar 

  • Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR . (2002). Requirement of Bmpr1a for Mullerian duct regression during male sexual development. Nat Genet 32: 408–410.

    Article  CAS  PubMed  Google Scholar 

  • Jane-Valbuena J, Widlund HR, Perner S, Johnson LA, Dibner AC, Lin WM et al. (2010). An oncogenic role of ETV1 in melanoma. Cancer Res 70: 2075–2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Yu Y, Yang HW, Agar NY, frado L, Johnson MD . (2010). The imprinted gene PEG3 inhibits Wnt signaling and regulates glioma growth. J Biol Chem 285: 8472–8480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T, George Fantus I, Sun J . (2008). Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of b-catenin. Cell Signal 20: 1697–1704.

    Article  CAS  PubMed  Google Scholar 

  • Jubb I, Kennedy KVF, Palmer N . (1993). Pathology of Domestic Animals, (4th edn). American Press: San Diego,.

    Google Scholar 

  • Kalfa N, Fellous M, Boizet-Bonhoure B, Patte C, Duvillard P, Pienkowski C et al. (2008). The mutations and potential targets of the forkhead transcription factor FOXL2. Sex Dev 2: 142–151.

    Article  Google Scholar 

  • Kim JH, Yoon S, Park M, Park HO, Ko JJ, Bae J . (2011). Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell mutant FOXL2 (134). Oncogene 30: 1653–1663.

    Article  CAS  PubMed  Google Scholar 

  • Kobel M, Gilks CB, Huntsman DG . (2009). Adult-type granulosa cell tumors and FOXL2 mutation. Cancer Res 69: 9160–9162.

    Article  PubMed  Google Scholar 

  • Lague MN, Paquet M, fan HY, Kaartinene MJ, Chu S, Jamin SP et al. (2008). Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in granulosa cell tumor development and progression. Carcinogenesis 29: 2062–2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Pisarska MD, Ko JJ, Kang Y, Yoon S, Ryou SM et al. (2005). Transcriptional factor FOXL2 interacts with DP130 and induces apoptosis. Biochem Biophys Res Commun 336: 876–881.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Robinson GW, Lesche R, Martinez-diaz H, Jiang Z, Rozengurt N et al. (2002). Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129: 4159–4170.

    CAS  PubMed  Google Scholar 

  • Liu Z, Rudd MD, Hernandez-Gonzalez I, Gonzalez-Robayna I, Fan HY, Zeleznik AJ et al. (2009). FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthesis pathways in granulosa cells. Mol Endocrinol 23: 649–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A . (1992). a-Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360: 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Moumne L, Batista F, Benayoun BA, Nallathambi J, Fellous M, Sundaresan P et al. (2008). The mutations and potential targets of the forkhead transcription factor FOXL2. Mol Cell Endocrinol 282: 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, Nedorezov T et al. (2007). Loss of Wnt4 and Foxl2 lead to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16: 2795–2804.

    Article  CAS  PubMed  Google Scholar 

  • Pangas SA, Li X, Umans L, Zwijsen A, Huylebroeck D, Gutierrez C et al. (2008). Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice. Mol Cell Biol 28: 248–257.

    Article  CAS  PubMed  Google Scholar 

  • Parakh TN, Hernadez JA, Grammer JC, Weck J, Hunzicker-Dunn M, Zeleznik AJ et al. (2006). Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proc Natl Acad Sci USA 103: 12435–12440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-Y, Su Y-Q, Ariga M, Law E, Jin S-LC, Conti M . (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 290: 395–398.

    Google Scholar 

  • Pisarska M, Barlow G, Kuo F-T . (2011). Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 152: 1199–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MC, Midgley AR, Richards JS . (1978). Hormonal regulation of ovarian cellular proliferation. Cell 14: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Richards JS, Sharma SC, Falender AE, Lo YH . (2002). Expression of FKHR, FKHRL1 and AFX genes in the rodent ovary: evidence for regulation by IGF-1, estrogen and the gonadotropins. Mol Endocrinol 16: 580–599.

    Article  CAS  PubMed  Google Scholar 

  • Richards JS . (1994). Hormonal control of gene expression in the ovary. Endocri Rev 15: 725–751.

    Article  CAS  Google Scholar 

  • Robker RL, Richards JS . (1998). Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27KIP1. Mol Endocrinol 12: 924–940.

    Article  CAS  PubMed  Google Scholar 

  • Schumer ST, Cannistra SA . (2003). Granulosa cell tumor of the ovary. J Clin Oncol 21: 1180–1189.

    Article  PubMed  Google Scholar 

  • Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC et al. (2009). Mutation of FOXL2 in granulosa cell tumors for the ovary. N Engl J Med 360: 2719–2729.

    Article  CAS  PubMed  Google Scholar 

  • Shimomura Y, Agalliu D, Vonica A, Luria V, Wajid M, Baumer A et al. (2010). APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464: 1043–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz R, Wagoner HA, Zeng P, Hammond JR, Hannonn TS, Pescovitz OH . (2004). Mechanisms regulating the constitutive activation of the extracellular signaling-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference ofr ERK1/2 on cancer cell proliferation. Mol Endocrinol 18: 2570–2582.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Fujita M, Furukawa Y, Hamamoto R, Shimokawa T, Miwa N et al. (2002). Isolation of a novel human gene, APCDD1, as a direct target of the b-catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Res 62: 5651–5656.

    CAS  PubMed  Google Scholar 

  • Tania M, Khan MDA, Zhang H, Li J, Song Y . (2010). Autotaxin: a protein with two faces. Biochem Biophys Res Comm 401: 493–497.

    Article  CAS  PubMed  Google Scholar 

  • Tanwar PS, Zhang L, Tanaka Y, Taketo MM, Donahoe PK, Teixera JM . (2010). Focal Mullerina duct retention in male mice with constitutively activated beta-catenin in the Mullerian duct mesenchyme. Proc Natl Acad Sci USA 107: 16142–16147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilly JL, Tilly KI, Kenton ML, Johnson AL . (1995). Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger RNA levels. Endocrinology 136: 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Trazzi S, Steger M, Mitrugno VM, Bartesaghi R, C E . (2010). CB1, cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3b/b-catenin signaling. J Biol Chem 285: 10098–10108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5: 375–387.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi G, Carnes K, Morrow C, Kostereva NV, Ekman GC, Meling DD et al. (2009). Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis. Biol Reprod 81: 258–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uda M, Ottolenghi C, Crisponi L, Garcia JE, Delana M, Kimber W et al. (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13: 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  • Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP . (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405–409.

    Article  CAS  PubMed  Google Scholar 

  • Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ . (2010). Canonical Wnt/beta-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells 28: 1794–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HX, Li TY, Kidder GM . (2010). Synthesis in mouse granulosa cells through b-catenin. Biol Reprod 82: 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Wodarz A, Nusse R . (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14: 59–88.

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehel K, Wierman ME . (2009). Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: role in proliferation and survival. Endocrinology 150: 2064–2071.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Microarray Core Facility at Baylor College of Medicine (Lisa K White, director) for performing the microarray analyses. Supported, in part, by NIH-HD-16229 and the Eunice Kennedy Shriver NICHD/NIH cooperative agreement (U54-(HD07945)) as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research (JSR), an operating grant from the Canadian Institutes of Health Research (DB) and a Discovery Grant from the National Sciences and Engineering Research Council (DB). We also acknowledge that hormone assays were done by The University of Virginia Research in Reproduction Ligand Assay and Analysis Core supported by the Eunice Kennedy Shriver NICHD/NIH (SCCPIR) grant U54-HD29034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Richards.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, J., Fan, HY., Liu, Z. et al. Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis. Oncogene 31, 1504–1520 (2012). https://doi.org/10.1038/onc.2011.341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.341

Keywords

This article is cited by

Search

Quick links