Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma

Abstract

Pancreatic ductal tumors invade local parenchyma and metastasize to distant organs. Src-mediated tyrosine kinase signaling pathways promote pancreatic ductal adenocarcinoma (PDAC) metastasis, though the molecular mechanisms supporting this invasive process are poorly understood and represent important and novel therapeutic targets. The large GTPase Dynamin 2 (Dyn2), a Src-kinase substrate, regulates membrane–cytoskeletal dynamics although it is yet to be defined if it contributes to tumor cell migration and invasion. Therefore, the goal of this study was to test if Dyn2 is upregulated in human pancreatic tumors and to define its role in cell migration and metastatic invasion using in vitro assays and nude mouse models. Histological analysis showed that 81% of 85 patients had elevated Dyn2 in PDAC. To test if Dyn2 overexpression alters metastatic properties of human pancreatic tumor cells, stable clones of BxPC-3 cells overexpressing either wild-type Dyn2 or a phosphorylation-deficient mutant Dyn2Y(231/597)F known to attenuate Dyn2 function, were generated and analyzed. Importantly, tumor cells overexpressing Dyn2 protruded lamellipodia at twice the rate, migrated faster (180%) and farther (2.5-fold greater distance) on glass and through transwell chambers (2–3-fold more cells through the filter) compared with cells expressing Dyn2Y(231/597)F or vector alone. Further, depletion of Dyn2 and dynamin inhibitors Myristyl trimethyl ammonium bromides and Dynasore significantly reduced cell migration, wound healing and invasion in transwell assays compared with controls. To test the metastatic potential conferred by increased Dyn2 expression, the BxPC-3 cell lines were implanted orthotopically into the pancreas of nude mice. Cells expressing Dyn2-green fluorescent protein exhibited a threefold increase in large distal tumors compared with cells expressing Dyn2Y(231/597)F or vector alone. Finally, histological analysis revealed that Dyn2 is upregulated in 60% of human metastatic pancreatic tumors. These findings are the first to implicate dynamin in any neoplastic condition and to directly demonstrate a role for this mechanoenzyme in invasive cell migration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahn S, Kim J, Lucaveche CL, Reedy MC, Luttrell LM, Lefkowitz RJ et al. (2002). Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J Biol Chem 277: 26642–26651.

    Article  CAS  Google Scholar 

  • Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y . (1999). Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem 274: 1185–1188.

    Article  CAS  Google Scholar 

  • Alves F, Contag S, Missbach M, Kaspareit J, Nebendahl K, Borchers U et al. (2001). An orthotopic model of ductal adenocarcinoma of the pancreas in severe combined immunodeficient mice representing all steps of the metastatic cascade. Pancreas 23: 227–235.

    Article  CAS  Google Scholar 

  • Bloomston M, Bhardwaj A, Ellison EC, Frankel WL . (2006). Epidermal growth factor receptor expression in pancreatic carcinoma using tissue microarray technique. Dig Surg 23: 74–79.

    Article  CAS  Google Scholar 

  • Bouvet M, Yang M, Nardin S, Wang X, Jiang P, Baranov E et al. (2000). Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastasis 18: 213–218.

    Article  CAS  Google Scholar 

  • Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM . (2005). Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol 15: 1276–1285.

    Article  CAS  Google Scholar 

  • Cao H, Chen J, Krueger EW, McNiven MA . (2010). SRC-mediated phosphorylation of dynamin and cortactin regulates the ‘constitutive’ endocytosis of transferrin. Mol Cell Biol 30: 781–792.

    Article  CAS  Google Scholar 

  • Cao H, Garcia F, McNiven MA . (1998). Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9: 2595–2609.

    Article  CAS  Google Scholar 

  • Chao WT, Kunz J . (2009). Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett 583: 1337–1343.

    Article  CAS  Google Scholar 

  • Dancer J, Takei H, Ro JY, Lowery-Nordberg M . (2007). Coexpression of EGFR and HER-2 in pancreatic ductal adenocarcinoma: a comparative study using immunohistochemistry correlated with gene amplification by fluorescencent in situ hybridization. Oncol Rep 18: 151–155.

    CAS  PubMed  Google Scholar 

  • Doherty GJ, McMahon HT . (2009). Mechanisms of endocytosis. Annu Rev Biochem 78: 857–902.

    Article  CAS  Google Scholar 

  • Etienne-Manneville S . (2008). Polarity proteins in migration and invasion. Oncogene 27: 6970–6980.

    Article  CAS  Google Scholar 

  • Ezratty EJ, Bertaux C, Marcantonio EE, Gundersen GG . (2009). Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187: 733–747.

    Article  CAS  Google Scholar 

  • Ezratty EJ, Partridge MA, Gundersen GG . (2005). Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 7: 581–590.

    Article  CAS  Google Scholar 

  • Frame MC . (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602: 114–130.

    CAS  Google Scholar 

  • Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP . (2004). Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116: 431–443.

    Article  CAS  Google Scholar 

  • Gomez TS, Hamann MJ, McCarney S, Savoy DN, Lubking CM, Heldebrant MP et al. (2005). Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat Immunol 6: 261–270.

    Article  CAS  Google Scholar 

  • Hakam A, Fang Q, Karl R, Coppola D . (2003). Coexpression of IGF-1R and c-Src proteins in human pancreatic ductal adenocarcinoma. Dig Dis Sci 48: 1972–1978.

    Article  CAS  Google Scholar 

  • Hansen CG, Nichols BJ . (2009). Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122: 1713–1721.

    Article  CAS  Google Scholar 

  • Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, Baril P et al. (2008). Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 27: 1951–1960.

    Article  CAS  Google Scholar 

  • Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M et al. (2006). The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res 12: 6170–6178.

    Article  CAS  Google Scholar 

  • Henley JR, Krueger EW, Oswald BJ, McNiven MA . (1998). Dynamin-mediated internalization of caveolae. J Cell Biol 141: 85–99.

    Article  CAS  Google Scholar 

  • Hill TA, Odell LR, Quan A, Abagyan R, Ferguson G, Robinson PJ et al. (2004). Long chain amines and long chain ammonium salts as novel inhibitors of dynamin GTPase activity. Bioorg Med Chem Lett 14: 3275–3278.

    Article  CAS  Google Scholar 

  • Hinshaw JE . (2000). Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16: 483–519.

    Article  CAS  Google Scholar 

  • Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P . (2005). Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9: 791–804.

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E . (2010). Cancer statistics, 2010. CA Cancer J Clin 60: 277–300.

    Article  Google Scholar 

  • Jones SM, Howell KE, Henley JR, Cao H, McNiven MA . (1998). Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279: 573–577.

    Article  CAS  Google Scholar 

  • Joshi S, Perera S, Gilbert J, Smith CM, Mariana A, Gordon CP et al. (2010). The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells. Mol Cancer Ther 9: 1995–2006.

    Article  CAS  Google Scholar 

  • Kessels MM, Engqvist-Goldstein AE, Drubin DG, Qualmann B . (2001). Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153: 351–366.

    Article  CAS  Google Scholar 

  • Kim DJ, Kim SH, Lim CS, Choi KY, Park CS, Sung BH et al. (2006). Interaction of SPIN90 with the Arp2/3 complex mediates lamellipodia and actin comet tail formation. J Biol Chem 281: 617–625.

    Article  CAS  Google Scholar 

  • Kim LC, Song L, Haura EB . (2009). Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6: 587–595.

    Article  Google Scholar 

  • Kim Y, Kim S, Lee S, Kim SH, Park ZY, Song WK et al. (2005). Interaction of SPIN90 with dynamin I and its participation in synaptic vesicle endocytosis. J Neurosci 25: 9515–9523.

    Article  CAS  Google Scholar 

  • Kruchten AE, McNiven MA . (2006). Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 119: 1683–1690.

    Article  CAS  Google Scholar 

  • Krueger EW, Orth JD, Cao H, McNiven MA . (2003). A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14: 1085–1096.

    Article  CAS  Google Scholar 

  • Lee E, De Camilli P . (2002). Dynamin at actin tails. Proc Natl Acad Sci USA 99: 161–166.

    Article  CAS  Google Scholar 

  • Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H et al. (1998). Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 243: 503–508.

    Article  CAS  Google Scholar 

  • Machesky LM . (2008). Lamellipodia and filopodia in metastasis and invasion. FEBS Lett 582: 2102–2111.

    Article  CAS  Google Scholar 

  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T . (2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10: 839–850.

    Article  CAS  Google Scholar 

  • McNiven MA . (1998). Dynamin: a molecular motor with pinchase action. Cell 94: 151–154.

    Article  CAS  Google Scholar 

  • McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW . (2000). Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151: 187–198.

    Article  CAS  Google Scholar 

  • Mihaljevic AL, Michalski CW, Friess H, Kleeff J . (2010). Molecular mechanism of pancreatic cancer--understanding proliferation, invasion, and metastasis. Langenbecks Arch Surg 395: 295–308.

    Article  Google Scholar 

  • Mooren OL, Kotova TI, Moore AJ, Schafer DA . (2009). Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem 284: 23995–24005.

    Article  CAS  Google Scholar 

  • Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D et al. (2010). Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 139: 292–303.

    Article  CAS  Google Scholar 

  • Muders MH, Dutta SK, Wang L, Lau JS, Bhattacharya R, Smyrk TC et al. (2006). Expression and regulatory role of GAIP-interacting protein GIPC in pancreatic adenocarcinoma. Cancer Res 66: 10264–10268.

    Article  CAS  Google Scholar 

  • Newton AJ, Kirchhausen T, Murthy VN . (2006). Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci USA 103: 17955–17960.

    Article  CAS  Google Scholar 

  • Nieto J, Grossbard ML, Kozuch P . (2008). Metastatic pancreatic cancer 2008: is the glass less empty? Oncologist 13: 562–576.

    Article  CAS  Google Scholar 

  • Orth JD, Krueger EW, Cao H, McNiven MA . (2002). The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci USA 99: 167–172.

    Article  CAS  Google Scholar 

  • Orth JD, McNiven MA . (2003). Dynamin at the actin-membrane interface. Curr Opin Cell Biol 15: 31–39.

    Article  CAS  Google Scholar 

  • Pollard TD, Borisy GG . (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.

    Article  CAS  Google Scholar 

  • Praefcke GJ, McMahon HT . (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147.

    Article  CAS  Google Scholar 

  • Qualmann B, Kessels MM, Kelly RB . (2000). Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150: F111–F116.

    Article  CAS  Google Scholar 

  • Quan A, McGeachie AB, Keating DJ, van Dam EM, Rusak J, Chau N et al. (2007). Myristyl trimethyl ammonium bromide and octadecyl trimethyl ammonium bromide are surface-active small molecule dynamin inhibitors that block endocytosis mediated by dynamin I or dynamin II. Mol Pharmacol 72: 1425–1439.

    Article  CAS  Google Scholar 

  • Schafer DA . (2004). Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5: 463–469.

    Article  CAS  Google Scholar 

  • Schlunck G, Damke H, Kiosses WB, Rusk N, Symons MH, Waterman-Storer CM et al. (2004). Modulation of Rac localization and function by dynamin. Mol Biol Cell 15: 256–267.

    Article  CAS  Google Scholar 

  • Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD . (2004). Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279: 20392–20400.

    Article  CAS  Google Scholar 

  • Thybusch-Bernhardt A, Beckmann S, Juhl H . (2001). Comparative analysis of the EGF-receptor family in pancreatic cancer: expression of HER-4 correlates with a favourable tumor stage. Int J Surg Investig 2: 393–400.

    CAS  PubMed  Google Scholar 

  • Urrutia R, Henley JR, Cook T, McNiven MA . (1997). The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci USA 94: 377–384.

    Article  CAS  Google Scholar 

  • Vieira AV, Lamaze C, Schmid SL . (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089.

    Article  CAS  Google Scholar 

  • Wang Y, Cao H, Chen J, McNiven MA . (2011). A direct interaction between the large GTPase dynamin-2 and FAK regulates focal adhesion dynamics in response to active Src. Mol Biol Cell 22: 1529–1538.

    Article  CAS  Google Scholar 

  • Weller SG, Capitani M, Cao H, Micaroni M, Luini A, Sallese M et al. (2010). Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proc Natl Acad Sci USA 107: 5863–5868.

    Article  CAS  Google Scholar 

  • Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X et al. (2010). Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat Cell Biol 12: 902–908.

    Article  CAS  Google Scholar 

  • Yamaguchi H, Condeelis J . (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773: 642–652.

    Article  CAS  Google Scholar 

  • Yoo J, Jeong MJ, Cho HJ, Oh ES, Han MY . (2005). Dynamin II interacts with syndecan-4, a regulator of focal adhesion and stress-fiber formation. Biochem Biophys Res Commun 328: 424–431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Institutes of Health NCI R01-CA104125 (MAM), T32-DK007198 (RDE), the Mayo Clinic Center for Cell Signaling in Gastroenterology (NIDDK P30DK084567), the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA 102701), the Lustgarten Foundation for Pancreatic Cancer Research and the Fraternal Order of the Eagles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A McNiven.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppinga, R., Krueger, E., Weller, S. et al. Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma. Oncogene 31, 1228–1241 (2012). https://doi.org/10.1038/onc.2011.329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.329

Keywords

This article is cited by

Search

Quick links