Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype

Abstract

Identification and characterization of cancer stem cells (CSCs) in gastric cancer are difficult owing to the lack of specific markers and consensus methods. In this study, we show that cells with the CD90 surface marker in gastric tumors could be enriched under non-adherent, serum-free and sphere-forming conditions. These CD90+ cells possess a higher ability to initiate tumor in vivo and could re-establish the cellular hierarchy of tumors from single-cell implantation, demonstrating their self-renewal properties. Interestingly, higher proportion of CD90+ cells correlates with higher in vivo tumorigenicity of gastric primary tumor models. In addition, it was found that ERBB2 was overexpressed in about 25% of the gastric primary tumor models, which correlates with the higher level of CD90 expression in these tumors. Trastuzumab (humanized anti-ERBB2 antibody) treatment of high-tumorigenic gastric primary tumor models could reduce the CD90+ population in tumor mass and suppress tumor growth when combined with traditional chemotherapy. Moreover, tumorigenicity of tumor cells could also be suppressed when trastuzumab treatment starts at the same time as cell implantation. Therefore, we have identified a CSC population in gastric primary tumors characterized by their CD90 phenotype. The finding that trastuzumab targets the CSC population in gastric tumors suggests that ERBB2 signaling has a role in maintaining CSC populations, thus contributing to carcinogenesis and tumor invasion. In conclusion, the results from this study provide new insights into the gastric tumorigenic process and offer potential implications for the development of anticancer drugs as well as therapeutic treatment of gastric cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N . (2007). Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 109: 3570–3578.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein ID, Tam MR, Nowinski RC . (1980). Mouse leukemia: therapy with monoclonal antibodies against a thymus differentiation antigen. Science 207: 68–71.

    Article  CAS  PubMed  Google Scholar 

  • Beuzeboc P, Scholl S, Garau XS, Vincent-Salomon A, Cremoux PD, Couturier J et al. (1999). Herceptin, a monoclonal humanized antibody anti-HER2: a major therapeutic progress in breast cancers overexpressing this oncogene? Bull Cancer 86: 544–549.

    CAS  PubMed  Google Scholar 

  • Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP et al. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466: 133–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowles MJ, Benjamin IS . (2001). ABC of the upper gastrointestinal tract: cancer of the stomach and pancreas. BMJ 323: 1413–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstein HJ, Kuter I, Campos SM, Gelman RS, Tribou L, Parker LM et al. (2001). Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 19: 2722–2730.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang GM, Liu YJ, Qian RZ . (2007). Cancer stem-like cells in human prostate carcinoma cells DU145: The seeds of the cell line? Cancer Biol Ther 6: 763–768.

    Article  Google Scholar 

  • Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G et al. (2008). Isolation and molecular characterization of cancer stem cells in MMTV-<I>Wnt-1</I> murine breast tumors. Stem Cells 26: 364–371.

    Article  CAS  PubMed  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL et al. (2006). Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66: 9339–9344.

    Article  CAS  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106: 13820–13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS et al. (2006). Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 103: 9912–9917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM, Goltry KL . (2007). Clinical-scale expansion of a mixed population of bone marrow-derived stem and progenitor cells for potential use in bone tissue regeneration. Stem Cells 25: 2575–2582.

    Article  PubMed  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dontu G, Jackson K, McNicholas E, Kawamura M, Abdallah W, Wicha M . (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: R605–R615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira S-M, García-Echeverría C et al. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Euhus D, Hudd C, LaRegina M, Johnson F . (1986). Tumor measurement in the nude mouse. J Surg Oncol 31: 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Farnie G, Clarke R . (2007). Mammary stem cells and breast cancer—role of notch signalling. Stem Cell Rev Rep 3: 169–175.

    Article  CAS  Google Scholar 

  • Fukuda K, Saikawa Y, Ohashi M, Kumagai K, Kitajima M, Okano H . (2009). Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol 34: 1201–1207.

    CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cancer Cell 1: 555–567.

    CAS  Google Scholar 

  • Haack-Sorensen M, Friis T, Bindslev L, Mortensen S, Johnsen H, Kastrup J . (2007). Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy. Scan J Clin Lab Invest 12: 1–17.

    Google Scholar 

  • Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC et al. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24: 2840–2850.

    Article  CAS  PubMed  Google Scholar 

  • Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. (2004). Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  PubMed  Google Scholar 

  • Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7: 330–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauraniemi P, Hautaniemi S, Autio R, Astola J, Monni O, Elkahloun A et al. (2003). Effects of herceptin treatment on global gene expression patterns in HER2-amplified and nonamplified breast cancer cell lines. Oncogene 23: 1010–1013.

    Article  Google Scholar 

  • Kelly LM, Gilliland DG . (2002). Genetics of myeloid leukemias. Annu Rev Genom Hum Genet 3: 179–198.

    Article  CAS  Google Scholar 

  • Kondo T, Setoguchi T, Taga T . (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101: 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkaya H, Paulson A, Iovino F, Wicha MS . (2008). HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27: 6120–6130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lázaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J et al. (2003). Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 38: 1095–1106.

    Article  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. (2007). Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir I et al. (2006). Analysis of gene expression and chemoresistance of CD133+er stem cells in glioblastoma. Mol Cancer 5: 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobo NA, Shimono Y, Qian D, Clarke MF . (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol 23: 675–699.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Chan KW, Hu L, Lee TKW, Wo JYH, Ng IOL et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132: 2542–2556.

    Article  CAS  PubMed  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55–70.

    Article  CAS  PubMed  Google Scholar 

  • Marx AH, Tharun L, Muth J, Dancau A-M, Simon R, Yekebas E et al. (2009). HER-2 amplification is highly homogenous in gastric cancer. Hum Pathol 40: 769–777.

    Article  CAS  PubMed  Google Scholar 

  • Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. (2004). Characterization of clonogenic multiple myeloma cells. Blood 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J et al. (2006). Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol 154: 1062–1070.

    Article  CAS  PubMed  Google Scholar 

  • O/'Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    Article  CAS  Google Scholar 

  • Oikonomou D, Hassan K, Kaifi J, Fiegel H, Schurr P, Reichelt U et al. (2007). Thy-1 as a potential novel diagnostic marker for gastrointestinal stromal tumors. J Cancer Res Clin Oncol 133: 951–955.

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S . (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448: 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Paik S, Kim C, Wolmark N . (2008). HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358: 1409–1411.

    Article  CAS  PubMed  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104: 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang L, Yang Y, Ma Y-J, Chen F-H, Zhang L-B, Liu W et al. (2009). Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279: 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . (2008). Efficient tumour formation by single human melanoma cells. Nature 456: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rege TA, Hagood JS . (2006). Thy-1 as a regulator of cell–cell and cell–matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20: 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Clevers H . (2005). Wnt signalling in stem cells and cancer. Nature 434: 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL . (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds B, Weiss S . (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Riley L, Zhou H, Lange K, Sinsheimer JS, Sehl ME . (2010). Breast cancer stem cell extinction models: implications for HER2 targeted therapy. AACR 2010 Meeting, abstract 104.

  • Ruangpratheep C, Lohachittranond C, Poonpracha T, Punyarit P . (2005). OCT4 expression on a case of poorly differentiated (insular) carcinoma of the thyroid gland and minireview. J Med Assoc Thai 88: S281–S289.

    PubMed  Google Scholar 

  • Sanada Y, Yoshida K, Ohara M, Oeda M, Konishi K, Tsutani Y . (2006). Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas 32: 164–170; 110.1097/1001.mpa.0000202947.0000280117.a0000202940.

    Article  CAS  PubMed  Google Scholar 

  • Seeger RC, Danon YL, Rayner SA, Hoover F . (1982). Definition of a Thy-1 determinant on human neuroblastoma, glioma, sarcoma, and teratoma cells with a monoclonal antibody. J Immunol 128: 983–989.

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Spisek R, Kukreja A, Chen L-C, Matthews P, Mazumder A, Vesole D et al. (2007). Frequent and specific immunity to the embryonal stem cell–associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 204: 831–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taipale J, Beachy PA . (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411: 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S . (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Takaishi S, Okumura T, Wang TC . (2008). Gastric cancer stem cells. J Clin Oncol 26: 2876–2882.

    Article  PubMed  Google Scholar 

  • Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, Soini Y et al. (2005). Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol 16: 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Tomayko M, Reynolds C . (1989). Determination of subcutaneous tumor size in athymic (nude) mice, Cancer Chemother. Pharmacol 24: 148–154.

    CAS  Google Scholar 

  • Wang K-H, Kao A-P, Chang C-C, Lee J-N, Hou M-F, Long C-Y et al. (2010). Increasing CD44+/CD24− tumor stem cells, and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Mol Cancer 9: 288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, He W, Lu C, Wang Z, Wang J, Giercksky KE et al. (2009). Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res 29: 1233–1241.

    CAS  PubMed  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P et al. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13: 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Doi T, Ohtsu A, Boku N, Hashizume K, Nakanishi M et al. (2006). Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer. Oncol Rep 15: 65–71.

    PubMed  Google Scholar 

  • Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. (2009). Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458: 776–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou G-M . (2008). Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J Cell Physiol 217: 598–604.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Danny Du, Melody Huang and John Xu for help with flow cytometric and cell sorting experiments. Assistance in biostatistics analysis from Shannon Chuai and Shaojuan Li is greatly appreciated. We also express our gratitude to Drs Jianyong Shou, Baohong Cao, Wen Xiong, Zhui Chen and Chris Lu at China Novartis Institutes for Biomedical Research for stimulating discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Chen.

Ethics declarations

Competing interests

Dr Jiang has been funded by a fellowship from the Novartis Education Office. Other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Zhang, Y., Chuai, S. et al. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene 31, 671–682 (2012). https://doi.org/10.1038/onc.2011.282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.282

Keywords

This article is cited by

Search

Quick links