Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modeling ductal carcinoma in situ: a HER2–Notch3 collaboration enables luminal filling

Abstract

A large fraction of ductal carcinoma in situ (DCIS), a non-invasive precursor lesion of invasive breast cancer, overexpresses the HER2/neu oncogene. The ducts of DCIS are abnormally filled with cells that evade apoptosis, but the underlying mechanisms remain incompletely understood. We overexpressed HER2 in mammary epithelial cells and observed growth factor-independent proliferation. When grown in extracellular matrix as three-dimensional spheroids, control cells developed a hollow lumen, but HER2-overexpressing cells populated the lumen by evading apoptosis. We demonstrate that HER2 overexpression in this cellular model of DCIS drives transcriptional upregulation of multiple components of the Notch survival pathway. Importantly, luminal filling required upregulation of a signaling pathway comprising Notch3, its cleaved intracellular domain and the transcriptional regulator HES1, resulting in elevated levels of c-MYC and cyclin D1. In line with HER2–Notch3 collaboration, drugs intercepting either arm reverted the DCIS-like phenotype. In addition, we report upregulation of Notch3 in hyperplastic lesions of HER2 transgenic animals, as well as an association between HER2 levels and expression levels of components of the Notch pathway in tumor specimens of breast cancer patients. Therefore, it is conceivable that the integration of the Notch and HER2 signaling pathways contributes to the pathophysiology of DCIS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. (2006). Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8: 1235–1245.

    Article  CAS  Google Scholar 

  • Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P . (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57: 931–936.

    Article  CAS  Google Scholar 

  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3: 429–441.

    Article  CAS  Google Scholar 

  • Chen Y, Fischer WH, Gill GN . (1997). Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem 272: 14110–14114.

    Article  CAS  Google Scholar 

  • Clemenz AZ, Osipo C . (2009). Notch1 activates ErbB-2 through a PEA3-dependent mechanism. Cancer Res 69: 362s.

    Google Scholar 

  • Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG et al. (2010). Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat 123: 113–124.

    Article  CAS  Google Scholar 

  • Debnath J, Brugge JS . (2005). Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5: 675–688.

    Article  CAS  Google Scholar 

  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS . (2002). The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111: 29–40.

    Article  CAS  Google Scholar 

  • Debnath J, Walker SJ, Brugge JS . (2003). Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J Cell Biol 163: 315–326.

    Article  CAS  Google Scholar 

  • Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. (2007). Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13: 3207–3214.

    Article  CAS  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.

    Article  CAS  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    Article  CAS  Google Scholar 

  • Hennessy B, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z et al. (2010). A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clinical Proteomics 6: 129–151.

    Article  CAS  Google Scholar 

  • Howlin J, McBryan J, Martin F . (2006). Pubertal mammary gland development: insights from mouse models. J Mammary Gland Biol Neoplasia 11: 283–297.

    Article  Google Scholar 

  • Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P . (2006). Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 168: 973–990.

    Article  CAS  Google Scholar 

  • Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A . (1989). p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9: 1165–1172.

    Article  CAS  Google Scholar 

  • Ignatiadis M, Desmedt C, Sotiriou C, de Azambuja E, Piccart M . (2009). HER-2 as a target for breast cancer therapy. Clin Cancer Res 15: 1848–1852.

    Article  CAS  Google Scholar 

  • Imatani A, Callahan R . (2000). Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 19: 223–231.

    Article  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y . (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194: 237–255.

    Article  CAS  Google Scholar 

  • Jechlinger M, Podsypanina K, Varmus H . (2009). Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev 23: 1677–1688.

    Article  CAS  Google Scholar 

  • Katz M, Amit I, Citri A, Shay T, Carvalho S, Lavi S et al. (2007). A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat Cell Biol 9: 961–969.

    Article  CAS  Google Scholar 

  • Korkaya H, Paulson A, Iovino F, Wicha MS . (2008). HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27: 6120–6130.

    Article  CAS  Google Scholar 

  • Liu J, Sato C, Cerletti M, Wagers A . (2010). Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol 92: 367–409.

    Article  CAS  Google Scholar 

  • Lonardo F, Di Marco E, King CR, Pierce JH, Segatto O, Aaronson SA et al. (1990). The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol 2: 992–1003.

    CAS  Google Scholar 

  • Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P et al. (2009). Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15: 2010–2021.

    Article  CAS  Google Scholar 

  • Mazzone M, Selfors LM, Albeck J, Overholtzer M, Sale S, Carroll DL et al. (2010). Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc Natl Acad Sci USA 107: 5012–5017.

    Article  CAS  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  Google Scholar 

  • Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, Shih IeM et al. (2007). Amplicon profiles in ovarian serous carcinomas. Int J Cancer 120: 2613–2617.

    Article  CAS  Google Scholar 

  • Palomero T, Dominguez M, Ferrando AA . (2008). The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 7: 965–970.

    Article  CAS  Google Scholar 

  • Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. (2006). NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 103: 18261–18266.

    Article  CAS  Google Scholar 

  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13: 1203–1210.

    Article  CAS  Google Scholar 

  • Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V et al. (2004). Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167: 215–221.

    Article  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  Google Scholar 

  • Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L et al. (1996). Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15: 2452–2467.

    Article  CAS  Google Scholar 

  • Prigent SA, Gullick WJ . (1994). Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J 13: 2831–2841.

    Article  CAS  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65: 8530–8537.

    Article  CAS  Google Scholar 

  • Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY et al. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461: 109–113.

    Article  CAS  Google Scholar 

  • Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H et al. (2008). The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68: 5405–5413.

    Article  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature 439: 84–88.

    Article  CAS  Google Scholar 

  • Simpson CD, Anyiwe K, Schimmer AD . (2008). Anoikis resistance and tumor metastasis. Cancer Lett 272: 177–185.

    Article  CAS  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  Google Scholar 

  • Speers C, Tsimelzon A, Sexton K, Herrick AM, Gutierrez C, Culhane A et al. (2009). Identification of novel kinase targets for the treatment of estrogen receptor-negative breast cancer. Clin Cancer Res 15: 6327–6340.

    Article  CAS  Google Scholar 

  • Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61: 3200–3205.

    CAS  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature 439: 993–997.

    Article  CAS  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K . (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Res 66: 1517–1525.

    Article  CAS  Google Scholar 

  • Tekmal RR, Nair HB, Perla RP, Kirma N . (2007). HER-2/neu x aromatase double transgenic mice model: the effects of aromatase overexpression on mammary tumorigenesis. J Steroid Biochem Mol Biol 106: 111–118.

    Article  CAS  Google Scholar 

  • Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL . (2004). Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279: 24505–24513.

    Article  CAS  Google Scholar 

  • van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O et al. (1988). Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319: 1239–1245.

    Article  CAS  Google Scholar 

  • Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A . (1995). Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 14: 4267–4275.

    Article  CAS  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    Article  CAS  Google Scholar 

  • Whelan JT, Forbes SL, Bertrand FE . (2007). CBF-1 (RBP-J kappa) binds to the PTEN promoter and regulates PTEN gene expression. Cell Cycle 6: 80–84.

    Article  CAS  Google Scholar 

  • Worthylake R, Opresko LK, Wiley HS . (1999). ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 274: 8865–8874.

    Article  CAS  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

  • Yin L, Velazquez OC, Liu ZJ . (2010). Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 80: 690–701.

    Article  CAS  Google Scholar 

  • Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL et al. (2010). High Notch1 protein expression is an early event in breast cancer development and is associated with the HER-2 molecular subtype. Histopathology 56: 286–296.

    Article  Google Scholar 

  • Zhan L, Xiang B, Muthuswamy SK . (2006). Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res 66: 5201–5208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Amit Zeisel and Sara Lavi for help, Brenda Lilly for the Notch3 reporter, and Powel Brown, Corey Speers and the Kleberg Center for Molecular Markers at MD Anderson Cancer Center (CCSG grant NCI CA16672) for providing tumors for the RPPA analysis. We acknowledge research funding by the National Cancer Institute (CA072981, CA121994-01 and CA120248-01), the Israel Cancer Research Fund, Dr Miriam and Sheldon G Adelson Medical Research Foundation, Kekst Family Institute for Medical Genetics, Kirk Center for Childhood Cancer and Immunological Disorders, the Women's Health Research Center funded by Bennett-Pritzker Endowment Fund, Marvelle Koffler Program for Breast Cancer Research, Leir Charitable Foundation and the MD. Moross Institute for Cancer Research, the Susan G Komen Foundation (FAS0703849 to AMG, BTH and GBM), and a fellowship for PhD track for specialist medical doctors by the Linda and Michael Jacobs Charitable Trust (WJK). YY is the incumbent of the Harold and Zelda Goldenberg Professorial Chair and ED of the Henry J Leir Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yarden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradeep, CR., Köstler, W., Lauriola, M. et al. Modeling ductal carcinoma in situ: a HER2–Notch3 collaboration enables luminal filling. Oncogene 31, 907–917 (2012). https://doi.org/10.1038/onc.2011.279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.279

Keywords

This article is cited by

Search

Quick links