Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor α

Abstract

Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3+/− mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERα-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERα-dependent transactivation by reducing the stability of ERα. Consistent with its ability to regulate the levels of ERα, expression of RUNX3 inversely correlates with the expression of ERα in breast cancer cell lines, human breast cancer tissues and Runx3+/− mouse mammary tumors. By destabilizing ERα, RUNX3 acts as a novel tumor suppressor in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Anderson E . (2002). The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res 4: 197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheskis BJ, Greger JG, Nagpal S, Freedman LP . (2007). Signaling by estrogens. J Cell Physiol 213: 610–617.

    Article  CAS  PubMed  Google Scholar 

  • Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol Cell Biol 25: 8097–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H et al. (2007). Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67: 5513–5521.

    Article  CAS  PubMed  Google Scholar 

  • Ekena K, Weis KE, Katzenellenbogen JA, Katzenellenbogen BS . (1996). Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding. J Biol Chem 271: 20053–20059.

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Nakshatri H, Nephew KP . (2004). Inhibiting proteasomal proteolysis sustains estrogen receptor-alpha activation. Mol Endocrinol 18: 2603–2615.

    Article  CAS  PubMed  Google Scholar 

  • Frech MS, Halama ED, Tilli MT, Singh B, Gunther EJ, Chodosh LA et al. (2005). Deregulated estrogen receptor alpha expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Cancer Res 65: 681–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Inoue KI, Bae SC, Ito Y . (2009). Runx3 expression in gastrointestinal tract epithelium: resolving the controversy. Oncogene 28: 1379–1384.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14: 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y . (2004). Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 23: 4198–4208.

    Article  CAS  PubMed  Google Scholar 

  • Jerry DJ, Dunphy KA, Hagen MJ . (2010). Estrogens, regulation of p53 and breast cancer risk: a balancing act. Cell Mol Life Sci 67: 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Tong D, Lou G, Zhang Y, Geng J . (2008). Expression of RUNX3 gene, methylation status and clinicopathological significance in breast cancer and breast cancer cell lines. Pathobiology 75: 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Katzenellenbogen BS, Katzenellenbogen JA . (2000). Estrogen receptor transcription and transactivation: estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Rogers MA, Obando JA, Tamsen A . (1994). Estrogen receptor expression of benign breast epithelium and its association with breast cancer. Cancer Res 54: 993–997.

    CAS  PubMed  Google Scholar 

  • LaMarca HL, Rosen JM . (2007). Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage. Breast Cancer Res 9: 304–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M et al. (2006). RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66: 6512–6520.

    Article  CAS  PubMed  Google Scholar 

  • Lonard DM, Nawaz Z, Smith CL, O'Malley BW . (2000). The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5: 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW . (1999). Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 96: 1858–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D et al. (2003). Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695–707.

    Article  CAS  PubMed  Google Scholar 

  • Sakuma A, Fukamachi H, Ito K, Ito Y, Takeuchi S, Takahashi S . (2008). Loss of Runx3 affects ovulation and estrogen-induced endometrial cell proliferation in female mice. Mol Reprod Dev 75: 1653–1661.

    Article  CAS  PubMed  Google Scholar 

  • Shoker BS, Jarvis C, Clarke RB, Anderson E, Munro C, Davies MP et al. (2000). Abnormal regulation of the oestrogen receptor in benign breast lesions. J Clin Pathol 53: 778–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam MM, Chan JY, Soong R, Ito K, Ito Y, Yeoh KG et al. (2009a). RUNX3 inactivation by frequent promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression. Breast Cancer Res Treat 113: 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K, Salto-Tellez M . (2009b). Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta 1796: 315–331.

    CAS  PubMed  Google Scholar 

  • Tateishi Y, Kawabe Y, Chiba T, Murata S, Ichikawa K, Murayama A et al. (2004). Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO J 23: 4813–4823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y . (2006). RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281: 5267–5276.

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Fu J, Qu Z, Li S, Tanaka T, Grusby MJ et al. (2009). PDLIM2 suppresses human T-cell leukemia virus type I Tax-mediated tumorigenesis by targeting Tax into the nuclear matrix for proteasomal degradation. Blood 113: 4370–4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 26: 4474–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DH, Salto-Tellez M, Chiu LL, Shen L, Koay ES . (2003). Tissue microarray study for classification of breast tumors. Life Sci 73: 3189–3199.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W Xu for reagents; W Xu, A Nardulli and members in the Chen lab for discussion. This work is supported in part by fund provided by UIUC (to LFC) and NIH grants DK-085158 (to LFC), CA116616 (to GTX) and DK-071909 (to DS). YHT is an A*STAR-Illinois Partnership fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Ito or L-F Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Qu, Z., Ong, C. et al. RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor α. Oncogene 31, 527–534 (2012). https://doi.org/10.1038/onc.2011.252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.252

Keywords

This article is cited by

Search

Quick links