Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion

Abstract

LKB1 is a tumor susceptibility gene for the Peutz–Jeghers cancer syndrome and is a target for mutational inactivation in sporadic human malignancies. LKB1 encodes a serine/threonine kinase that has critical roles in cell growth, polarity and metabolism. A novel and important function of LKB1 is its ability to regulate the phosphorylation of CREB-regulated transcription co-activators (CRTCs) whose aberrant activation is linked with oncogenic activities. However, the roles and mechanisms of LKB1 and CRTC in the pathogenesis of esophageal cancer have not been previously investigated. In this study, we observed altered LKB1–CRTC signaling in a subset of human esophageal cancer cell lines and patient samples. LKB1 negatively regulates esophageal cancer cell migration and invasion in vitro. Mechanistically, we determined that CRTC signaling becomes activated because of LKB1 loss, which results in the transcriptional activation of specific downstream targets including LYPD3, a critical mediator for LKB1 loss-of-function. Our data indicate that de-regulated LKB1–CRTC signaling might represent a crucial mechanism for esophageal cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C . (1998). A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18: 967–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altarejos JY, Goebel N, Conkright MD, Inoue H, Xie J, Arias CM et al. (2008). The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med 14: 1112–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altarejos JY, Montminy M . (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12: 141–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andl CD, Mizushima T, Nakagawa H, Oyama K, Harada H, Chruma K et al. (2003). Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J Biol Chem 278: 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  • Breuillaud L, Halfon O, Magistretti PJ, Pralong FP, Cardinaux JR . (2009). Mouse fertility is not dependent on the CREB coactivator Crtc1. Nat Med 15: 989–990; author reply 991.

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Medina PP, Pio R, Montuenga LM, Sanchez-Cespedes M . (2004). Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23: 4037–4040.

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Shimamura T, Rikova K, Jackson AL, Wilkerson MD, Borgman CL et al. (2010). Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 17: 547–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H et al. (2010). Inhibition of Notch signaling blocks growht of glioblastoma cell lines and tumor. Genes Cancer 1: 822–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Li YH, Chen XP, Gong LM, Zhang SP, Chang ZJ et al. (2005). Point mutation at single tyrosine residue of novel oncogene NOK abrogates tumorigenesis in nude mice. Cancer Res 65: 10838–10846.

    Article  CAS  PubMed  Google Scholar 

  • Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB et al. (2003). TORCs: transducers of regulated CREB activity. Mol Cell 12: 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA et al. (2005). Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res 65: 7137–7144.

    Article  CAS  PubMed  Google Scholar 

  • Enzinger PC, Mayer RJ . (2003). Esophageal cancer. N Engl J Med 349: 2241–2252.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA et al. (2000). Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene 19: 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV et al. (2000). Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119: 1447–1453.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J . (1999). Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 18: 1777–1780.

    Article  CAS  PubMed  Google Scholar 

  • Hansen LV, Laerum OD, Illemann M, Nielsen BS, Ploug M . (2008). Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma. Int J Cancer 122: 734–741.

    Article  CAS  PubMed  Google Scholar 

  • Hezel AF, Bardeesy N . (2008). LKB1; linking cell structure and tumor suppression. Oncogene 27: 6908–6919.

    Article  CAS  PubMed  Google Scholar 

  • Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham JM et al. (2003). Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci USA 100: 12147–12152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S et al. (2004). Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14: 1436–1450.

    Article  CAS  PubMed  Google Scholar 

  • Katoh Y, Takemori H, Lin XZ, Tamura M, Muraoka M, Satoh T et al. (2006). Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J 273: 2730–2748.

    Article  CAS  PubMed  Google Scholar 

  • Klein CA, Stoecklein NH . (2009). Lessons from an aggressive cancer: evolutionary dynamics in esophageal carcinoma. Cancer Res 69: 5285–5288.

    Article  CAS  PubMed  Google Scholar 

  • Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P et al. (2010). Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 29: 1672–1680.

    Article  CAS  PubMed  Google Scholar 

  • Komiya T, Park Y, Modi S, Coxon AB, Oh H, Kaye FJ . (2006). Sustained expression of Mect1-Maml2 is essential for tumor cell growth in salivary gland cancers carrying the t(11;19) translocation. Oncogene 25: 6128–6132.

    Article  CAS  PubMed  Google Scholar 

  • Kuwano H, Kato H, Miyazaki T, Fukuchi M, Masuda N, Nakajima M et al. (2005). Genetic alterations in esophageal cancer. Surg Today 35: 7–18.

    Article  PubMed  Google Scholar 

  • Lam AK . (2000). Molecular biology of esophageal squamous cell carcinoma. Crit Rev Oncol Hematol 33: 71–90.

    Article  CAS  PubMed  Google Scholar 

  • Launonen V, Avizienyte E, Loukola A, Laiho P, Salovaara R, Jarvinen H et al. (2000). No evidence of Peutz-Jeghers syndrome gene LKB1 involvement in left-sided colorectal carcinomas. Cancer Res 60: 546–548.

    CAS  PubMed  Google Scholar 

  • Lee JJ, Natsuizaka M, Ohashi S, Wong GS, Takaoka M, Michaylira CZ et al. (2010). Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Carcinogenesis 31: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yu XZ, Li TS, Song LX, Chen PL, Suo TL et al. (2004). A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res 64: 3491–3499.

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Zang M, Guo W . (2010). AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 6: 457–470.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney CL, Choudhury B, Davies H, Edkins S, Greenman C, Haaften G et al. (2009). LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer 100: 370–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makowski L, Hayes DN . (2008). Role of LKB1 in lung cancer development. Br J Cancer 99: 683–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al. (2007). Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26: 5911–5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihira T, Hashimoto Y, Katayama M, Mori S, Kuroki T . (1993). Molecular and cellular features of esophageal cancer cells. J Cancer Res Clin Oncol 119: 441–449.

    Article  CAS  PubMed  Google Scholar 

  • Paret C, Bourouba M, Beer A, Miyazaki K, Schnolzer M, Fiedler S et al. (2005). Ly6 family member C4.4A binds laminins 1 and 5, associates with galectin-3 and supports cell migration. Int J Cancer 115: 724–733.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LG, Wu X, Guan JL . (2005). Wound-healing assay. Methods Mol Biol 294: 23–29.

    PubMed  Google Scholar 

  • Rosel M, Claas C, Seiter S, Herlevsen M, Zoller M . (1998). Cloning and functional characterization of a new phosphatidyl-inositol anchored molecule of a metastasizing rat pancreatic tumor. Oncogene 17: 1989–2002.

    Article  CAS  PubMed  Google Scholar 

  • Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W et al. (1999). Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malignant melanomas. J Invest Dermatol 112: 509–511.

    Article  CAS  PubMed  Google Scholar 

  • Rustgi AK . (2006). Models of esophageal carcinogenesis. Semin Oncol 33: S57–S58.

    Article  PubMed  Google Scholar 

  • Sanchez-Cespedes M . (2007). A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26: 7825–7832.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  • Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. (2002). Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  • Seiter S, Stassar M, Rappl G, Reinhold U, Tilgen W, Zoller M . (2001). Upregulation of C4.4A expression during progression of melanoma. J Invest Dermatol 116: 344–347.

    Article  CAS  PubMed  Google Scholar 

  • Shackelford DB, Shaw RJ . (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T . (1992). Characterization of 21 newly established esophageal cancer cell lines. Cancer 69: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Tiainen M, Vaahtomeri K, Ylikorkala A, Makela TP . (2002). Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). Hum Mol Genet 11: 1497–1504.

    Article  CAS  PubMed  Google Scholar 

  • Tiainen M, Ylikorkala A, Makela TP . (1999). Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96: 9248–9251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonon G, Modi S, Wu L, Kubo A, Coxon AB, Komiya T et al. (2003). t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 33: 208–213.

    Article  CAS  PubMed  Google Scholar 

  • Vallbohmer D, Brabender J, Metzger R, Holscher AH . (2010). Genetics in the pathogenesis of esophageal cancer: possible predictive and prognostic factors. J Gastrointest Surg 14 (Suppl 1): S75–S80.

    Article  PubMed  Google Scholar 

  • van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME . (2010). High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  • Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T et al. (2009). Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4: e5137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . (2000). MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26: 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Liu J, Gao P, Nakamura M, Cao Y, Shen H et al. (2005). Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J 24: 2391–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurfel J, Seiter S, Stassar M, Claas A, Klas R, Rosel M et al. (2001). Cloning of the human homologue of the metastasis-associated rat C4.4A. Gene 262: 35–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jenny Huang for critical reading of our paper, Marda Jorgensen for helping with immunohistochemical staining and the University of Florida CTSI Biorepository for providing human esophageal tumor samples. This work was supported in part by the University of Florida Shands Cancer Center Startup fund (L Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Lin, S., Li, JL. et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 31, 469–479 (2012). https://doi.org/10.1038/onc.2011.247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.247

Keywords

This article is cited by

Search

Quick links