Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of the activation of the Fanconi anemia pathway by the p21 cyclin-dependent kinase inhibitor

Abstract

Fanconi anemia (FA) is a rare disease characterized by congenital defects, progressive bone marrow failure and heightened cancer susceptibility. The FA proteins, BRCA1 and FANCD1/BRCA2 function cooperatively in the FA-BRCA pathway to repair damaged DNA. Activation of the FA-BRCA pathway occurs via the monoubiquitination of the FANCD2 and FANCI proteins, targeting these proteins to discrete nuclear foci where they function in DNA repair. The cellular regulation of FANCD2/I monoubiquitination, however, remains poorly understood. In this study, we have examined the roles of the p53 tumor suppressor protein, as well as its downstream target, the p21Cip1/Waf1 cyclin-dependent kinase inhibitor, in the regulation of the activation of the FA-BRCA pathway. We demonstrate that, in contrast to p53, p21 has a major role in the regulation of the activation of the FA-BRCA pathway: p21 promotes S-phase and DNA damage-inducible FANCD2/I monoubiquitination and nuclear foci formation. Several lines of evidence establish that this effect is not a consequence of a defective G1–S checkpoint or altered cell-cycle progression in the absence of p21. Instead, we demonstrate that p21 is required for the transcriptional repression of the USP1 deubiquitinating enzyme upon exposure to DNA-damaging agents. In the absence of p21, persistent USP1 expression precludes the DNA damage-inducible accumulation of monoubiquitinated FANCD2 and FANCI. Consequently, p21−/− cells exhibit increased levels of mitomycin C-inducible complex chromosomal aberrations and elevated γH2AX nuclear foci formation. Our results demonstrate that p21 has a critical role in the regulation of the activation of the FA-BRCA pathway and suggest a broader role for p21 in the orchestration of DNA repair processes following exposure to DNA crosslinking agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abbas T, Dutta A . (2009). p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9: 400–414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A . (2008). PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 22: 2496–2506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abukhdeir AM, Park BH . (2008). P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10: e19.

    Article  PubMed Central  PubMed  Google Scholar 

  • Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD et al. (2010). Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 39: 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Alpi A, Langevin F, Mosedale G, Machida YJ, Dutta A, Patel KJ . (2007). UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol 27: 8421–8430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andreassen PR, D'Andrea AD, Taniguchi T . (2004). ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18: 1958–1963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arlt MF, Xu B, Durkin SG, Casper AM, Kastan MB, Glover TW . (2004). BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function. Mol Cell Biol 24: 6701–6709.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Auerbach AD . (1993). Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol 21: 731–733.

    CAS  PubMed  Google Scholar 

  • Avkin S, Sevilya Z, Toube L, Geacintov N, Chaney SG, Oren M et al. (2006). p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 22: 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Bendjennat M, Boulaire J, Jascur T, Brickner H, Barbier V, Sarasin A et al. (2003). UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell 114: 599–610.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chan KL, Palmai-Pallag T, Ying S, Hickson ID . (2009). Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11: 753–760.

    Article  CAS  PubMed  Google Scholar 

  • Chen U, Chen S, Saha P, Dutta A . (1996). p21Cip12/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc Natl Acad Sci USA 93: 11597–11602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP et al. (2007). A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 28: 786–797.

    Article  CAS  PubMed  Google Scholar 

  • Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD, Boulton SJ . (2007). HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol 9: 391–401.

    Article  CAS  PubMed  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K, Wahl GM . (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8: 2540–2551.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). WAF12/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.

    CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J et al. (2001). Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7: 249–262.

    Article  CAS  PubMed  Google Scholar 

  • Harney JA, Shimamura A, Howlett NG . (2008). Fanconi anemia: a multi-age cancer susceptibility syndrome. Pediatric Health 2: 175–187.

    Article  CAS  Google Scholar 

  • Hoskins EE, Gunawardena RW, Habash KB, Wise-Draper TM, Jansen M, Knudsen ES et al. (2008). Coordinate regulation of Fanconi anemia gene expression occurs through the Rb2/E2F pathway. Oncogene 27: 4798–4808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howlett NG, Harney JA, Rego MA, Kolling FW, Glover TW . (2009). Functional interaction between the Fanconi anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J Biol Chem 284: 28935–28942.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howlett NG, Taniguchi T, Durkin SG, D'Andrea AD, Glover TW . (2005). The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 14: 693–701.

    Article  CAS  PubMed  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609.

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W et al. (2006). Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8: 339–347.

    CAS  PubMed  Google Scholar 

  • Kee Y, D'Andrea AD . (2010). Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24: 1680–1694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A . (2011). Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 43: 142–146.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Starostina NG, Kipreos ET . (2008). The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 22: 2507–2519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C et al. (2010). Deficiency of FANCD2-associated nuclease KIAA10182/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142: 77–88.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Ghosal G, Yuan J, Chen J, Huang J . (2010). FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329: 693–696.

    Article  CAS  PubMed  Google Scholar 

  • Machida YJ, Machida Y, Chen Y, Gurtan AM, Kupfer GM, D'Andrea AD et al. (2006). UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol Cell 23: 589–596.

    Article  CAS  PubMed  Google Scholar 

  • MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ et al. (2010). Identification of KIAA10182/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142: 65–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathew CG . (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene 25: 5875–5884.

    Article  CAS  PubMed  Google Scholar 

  • Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, van de Vrugt HJ et al. (2003). A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet 35: 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Moldovan GL, D'Andrea AD . (2009). How the Fanconi anemia pathway guards the genome. Annu Rev Genet 43: 223–249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naim V, Rosselli F . (2009). The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11: 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD et al. (2005). Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 102: 1110–1115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD et al. (2005). The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ . (2010). Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329: 219–223.

    Article  CAS  PubMed  Google Scholar 

  • Podust VN, Podust LM, Goubin F, Ducommun B, Hubscher U . (1995). Mechanism of inhibition of proliferating cell nuclear antigen-dependent DNA synthesis by the cyclin-dependent kinase inhibitor p21. Biochemistry 34: 8869–8875.

    Article  CAS  PubMed  Google Scholar 

  • Prives C, Gottifredi V . (2008). The p21 and PCNA partnership: a new twist for an old plot. Cell Cycle 7: 3840–3846.

    Article  CAS  PubMed  Google Scholar 

  • Rego MA, Kolling FW, Howlett NG . (2009). The Fanconi anemia protein interaction network: casting a wide net. Mutat Res 668: 27–41.

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  • Sims AE, Spiteri E, Sims III RJ, Arita AG, Lach FP, Landers T et al. (2007). FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14: 564–567.

    Article  CAS  PubMed  Google Scholar 

  • Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME et al. (2010). A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 39: 36–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald III ER, Hurov KE, Luo J et al. (2007). Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129: 289–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J et al. (2011). SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 43: 138–141.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD . (2002). S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100: 2414–2420.

    Article  CAS  PubMed  Google Scholar 

  • Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V et al. (2010). Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42: 406–409.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Wang X, Andreassen PR, D'Andrea AD . (2004). Functional interaction of monoubiquitinated FANCD2 and BRCA22/FANCD1 in chromatin. Mol Cell Biol 24: 5850–5862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Kennedy RD, Ray K, Stuckert P, Ellenberger T, D'Andrea AD . (2007). Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia2/BRCA pathway. Mol Cell Biol 27: 3098–3108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, Namikoshi K et al. (2005). Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol 25: 34–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazoe M, Sonoda E, Hochegger H, Takeda S . (2004). Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. DNA Repair (Amst) 3: 1175–1185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Howlett laboratory, Paul R Andreassen, Matthew Stoner and Patrick Sung for helpful discussions. We thank Tony T Huang and Patrick Sung for the anti-USP1 and anti-FANCI antibodies, respectively. We thank Bert Vogelstein for cells. This work was supported by a Leukemia Research Foundation New Investigator grant (NGH), RI-INBRE Grant P20RR016457-09 from the National Center for Research Resources (NGH) and National Institutes of Health/National Heart, Lung and Blood Institute Grant R21HL095991-01 (NGH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N G Howlett.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rego, M., Harney, J., Mauro, M. et al. Regulation of the activation of the Fanconi anemia pathway by the p21 cyclin-dependent kinase inhibitor. Oncogene 31, 366–375 (2012). https://doi.org/10.1038/onc.2011.237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.237

Keywords

This article is cited by

Search

Quick links