Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Disruption of Tacc3 function leads to in vivo tumor regression

Abstract

The formation of the bipolar spindle is responsible for accurate chromosomal segregation during mitosis. The dynamic instability of microtubules has an important role in this process, and has been shown to be an effective target for cancer chemotherapy. Several agents that target non-microtubule mitotic proteins, including the motor protein Eg5, Aurora kinases and Polo-like kinases, are currently being developed as chemotherapeutic drugs. However, because the efficacies of these drugs remain elusive, new molecular targets that have essential roles in tumor cells are desired. Here, we provide in vivo evidence that transforming acidic coiled-coil-3 (Tacc3) is a potential target for cancer chemotherapy. Using MRI, we showed that Tacc3 loss led to the regression of mouse thymic lymphoma in vivo, which was accompanied by massive apoptosis. By contrast, normal tissues, including the thymus, showed no overt abnormalities, despite high Tacc3 expression. in vitro analysis indicated that Tacc3 depletion induced multi-polar spindle formation, which led to mitotic arrest, followed by apoptosis. Similar responses have been observed in Burkitt's lymphoma and T-ALL. These results show that Tacc3 is a vulnerable component of the spindle assembly in lymphoma cells and is a promising cancer chemotherapy target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91: 355–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr AR, Gergely F . (2008). MCAK-independent functions of ch-Tog/XMAP215 in microtubule plus-end dynamics. Mol Cell Biol 28: 7199–7211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellanger JM, Gonczy P . (2003). TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr Biol 13: 1488–1498.

    Article  CAS  PubMed  Google Scholar 

  • Charrasse S, Mazel M, Taviaux S, Berta P, Chow T, Larroque C . (1995). Characterization of the cDNA and pattern of expression of a new gene over-expressed in human hepatomas and colonic tumors. Eur J Biochem 234: 406–413.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Haas M . (1990). Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines. Mol Cell Biol 10: 5502–5509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow VT, Quek HH, Tock EP . (1993). Alternative splicing of the p53 tumor suppressor gene in the Molt-4 T-lymphoblastic leukemia cell line. Cancer Lett 73: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Cinti C, Claudio PP, Luca AD, Cuccurese M, Howard CM, D'Esposito M et al. (2000). A serine 37 mutation associated with two missense mutations at highly conserved regions of p53 affect proapoptotic genes expression in a T-lymphoblastoid drug resistant cell line. Oncogene 19: 5098–5105.

    Article  CAS  PubMed  Google Scholar 

  • Cullen CF, Ohkura H . (2001). Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol 3: 637–642.

    Article  CAS  PubMed  Google Scholar 

  • D'Assoro AB, Lingle WL, Salisbury JL . (2002). Centrosome amplification and the development of cancer. Oncogene 21: 6146–6153.

    Article  CAS  PubMed  Google Scholar 

  • Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T . (1991). p53 is frequently mutated in Burkitt's lymphoma cell lines. EMBO J 10: 2879–2887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielding AB, Lim S, Montgomery K, Dobreva I, Dedhar S . (2010). A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene 30: 521–534.

    Article  PubMed  Google Scholar 

  • Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. (1991). p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88: 5413–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascoigne KE, Taylor SS . (2008). Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14: 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Gergely F, Draviam VM, Raff JW . (2003). The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17: 336–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW . (2000a). The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci USA 97: 14352–14357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gergely F, Kidd D, Jeffers K, Wakefield JG, Raff JW . (2000b). D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J 19: 241–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MR, Holen KD, Liu G . (2009). Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7: 54–64.

    PubMed  PubMed Central  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Jackson JR, Patrick DR, Dar MM, Huang PS . (2007). Targeted antimitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, Charafe-Jauffret E, Geneix J et al. (2005). Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res 65: 767–779.

    CAS  PubMed  Google Scholar 

  • Janssen K, Pohlmann S, Janicke RU, Schulze-Osthoff K, Fischer U . (2007). Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment. Blood 110: 3662–3672.

    Article  CAS  PubMed  Google Scholar 

  • Jung CK, Jung JH, Park GS, Lee A, Kang CS, Lee KY . (2006). Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer. Pathol Int 56: 503–509.

    Article  CAS  PubMed  Google Scholar 

  • Keen N, Taylor S . (2004). Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4: 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A et al. (2005). Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170: 1047–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22: 2189–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauffart B, Vaughan MM, Eddy R, Chervinsky D, DiCioccio RA, Black JD et al. (2005). Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Womens Health 5: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bot N, Tsai MC, Andrews RK, Ahringer J . (2003). TAC-1, a regulator of microtubule length in the C elegans embryo. Curr Biol 13: 1499–1505.

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Gergely F, Jeffers K, Peak-Chew SY, Raff JW . (2001). Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol 3: 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. (2003). Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100: 5974–5979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliferenko S, Balasubramanian MK . (2002). Astral microtubules monitor metaphase spindle alignment in fission yeast. Nat Cell Biol 4: 816–820.

    Article  CAS  PubMed  Google Scholar 

  • Peset I, Vernos I . (2008). The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol 18: 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Piekorz RP, Hoffmeyer A, Duntsch CD, McKay C, Nakajima H, Sexl V et al. (2002). The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis. EMBO J 21: 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS . (2005). Spindle multipolarity is prevented by centrosomal clustering. Science 307: 127–129.

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Vardy L, Angel Garcia M, Koonrugsa N, Toda T . (2004). Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol Biol Cell 15: 1609–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Schneider L, Essmann F, Cirstea IC, Kuck F, Kletke A et al. (2010). The centrosomal protein TACC3 controls paclitaxel sensitivity by modulating a premature senescence program. Oncogene 29: 6184–6192.

    Article  CAS  PubMed  Google Scholar 

  • Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Schulze-Osthoff K et al. (2008). TACC3 depletion sensitizes to paclitaxel-induced cell death and overrides p21WAF-mediated cell cycle arrest. Oncogene 27: 116–125.

    Article  CAS  PubMed  Google Scholar 

  • Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W et al. (2007). The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem 282: 29273–29283.

    Article  CAS  PubMed  Google Scholar 

  • Schuendeln MM, Piekorz RP, Wichmann C, Lee Y, McKinnon PJ, Boyd K et al. (2004). The centrosomal, putative tumor suppressor protein TACC2 is dispensable for normal development, and deficiency does not lead to cancer. Mol Cell Biol 24: 6403–6409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T et al. (2009). Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15: 255–269.

    Article  CAS  PubMed  Google Scholar 

  • Srayko M, Quintin S, Schwager A, Hyman AA . (2003). Caenorhabditis elegans TAC-1 and ZYG-9 form a complex that is essential for long astral and spindle microtubules. Curr Biol 13: 1506–1511.

    Article  CAS  PubMed  Google Scholar 

  • Strebhardt K, Ullrich A . (2006). Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Sudakin V, Yen TJ . (2007). Targeting mitosis for anticancer therapy. BioDrugs 21: 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Tarapore P, Fukasawa K . (2002). Loss of p53 and centrosome hyperamplification. Oncogene 21: 6234–6240.

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Natsume Y, Noda T . (2007). TACC3 is required for the proper mitosis of sclerotome mesenchymal cells during formation of the axial skeleton. Cancer Sci 98: 555–562.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T Jacks for providing the R26CreERT2 mice; S Shibata, T Nakahara T Shimomura, S Saito and F Yamagishi for MRI imaging; S Hasegawa for helpful discussions; and Y Terui for the donation of human lymphoma cells. We also thank Y Inoue and T Hirota for critically reading the manuscript. This work was supported by a Grant-in-Aid for cancer research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Yao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, R., Natsume, Y., Saiki, Y. et al. Disruption of Tacc3 function leads to in vivo tumor regression. Oncogene 31, 135–148 (2012). https://doi.org/10.1038/onc.2011.235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.235

Keywords

This article is cited by

Search

Quick links