Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP

Abstract

The Salvador/Warts/Hippo (Hippo) signaling pathway defines a novel signaling cascade regulating cell contact inhibition, organ size control, cell growth, proliferation, apoptosis and cancer development in mammals. The Drosophila melanogaster protein Expanded acts in the Hippo signaling pathway to control organ size. Previously, willin/FRMD6 has been proposed as the human orthologue of Expanded. Willin lacks C-terminal sequences that are present in Expanded and, to date, little is known about the functional role of willin in mammalian cells. When willin is expressed in D. melanogaster epithelial tissues, it has the same subcellular localization as Expanded, but cannot rescue growth defects associated with expanded deficiency. However, we show that ectopic willin expression causes an increase in phosphorylation of the core Hippo signaling pathway components MST1/2, LATS1 and YAP, an effect that can be antagonized by ezrin. In MCF10A cells, loss of willin expression displays epithelial-to-mesenchymal transition features and willin overexpression antagonizes YAP activity via the N-terminal FERM domain of willin. Therefore, in mammalian cells willin influences Hippo signaling activity by activating the core Hippo pathway kinase cassette.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T et al. (2009). The FERM domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16: 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Bennett FC, Harvey KF . (2006). Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16: 2101–2110.

    Article  CAS  PubMed  Google Scholar 

  • Boedigheimer MJ, Laughon A . (1993). Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development 118: 1291–1301.

    CAS  PubMed  Google Scholar 

  • Boedigheimer MJ, Nguyen KP, Bryant PJ . (1997). Expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. Dev Genet 20: 103–110.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA . (2006). From cell structure to transcription: Hippo forges a new path. Cell 124: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N . (2010). Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18: 300–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves JD, Draves KE, Gotoh Y, Krebs EG, Clark EA . (2001). Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem 276: 14909–14915.

    Article  CAS  PubMed  Google Scholar 

  • Grusche FA, Richardson HE, Harvey KF . (2010). Upstream regulation of the hippo size control pathway. Curr Biol 13: R574–R582.

    Article  Google Scholar 

  • Gunn-Moore FJ, Welsh GI, Herron LR, Brannigan F, Venkateswarlu K, Gillespie S et al. (2005). A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett 579: 5089–5094.

    Article  CAS  PubMed  Google Scholar 

  • Haase D, Meister M, Muley T, Hess J, Teurich S, Schnabel P et al. (2007). FRMD3, a novel putative tumour suppressor in NSCLC. Oncogene 26: 4464–4468.

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Chun A, Cheung K, Rashidi B, Yang X . (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283: 5496–5509.

    Article  CAS  PubMed  Google Scholar 

  • Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8: 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Harvey KF, Pfleger CM, Hariharan IK . (2003). The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114: 457–467.

    Article  CAS  PubMed  Google Scholar 

  • Harvey K, Tapon N . (2007). The Salvador-Warts-Hippo pathway: an emerging tumour-suppressor network. Nat Rev Cancer 7: 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wu S, Barrera J, Matthews K, Pan D . (2005). The Hippo signaling pathway co-ordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122: 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Ohyama T, Yajima N, Tsubuki S, Yonehara S . (2001). MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem 276: 19276–19285.

    Article  CAS  PubMed  Google Scholar 

  • Lee T, Luo L . (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22: 451–461.

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S et al. (2011). Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138: 947–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton CC, Zhang X, Albanese NO, Harvey KF . (2010). Differential requirement of Salvador-Warts-Hippo pathway members for organ size control in Drosophila melanogaster. Development 137: 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Lopez-Lago M, Giancotti FG . (2005). Merlin/NF2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171: 361–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC et al. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci 103: 12405–12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan D . (2007). Hippo signaling in organ size control. Genes Dev 21: 886–897.

    Article  CAS  PubMed  Google Scholar 

  • Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M et al. (2008). Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40: 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  • Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H . (2006). The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 16: 2081–2089.

    Article  CAS  PubMed  Google Scholar 

  • Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L et al (2010). Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 107: 1431–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA et al. (2002). Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110: 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Tyler DM, Baker NE . (2007). Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol 305: 187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C et al. (2006). The Fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16: 2090–2100.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D . (2010). Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18: 288–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Hong W . (2008). The emerging role of the Hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13: 188–192.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Smolen GA, Haber DA . (2008). Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res 68: 2789–2794.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Milton CC, Humbert PO, Harvey KF . (2009). Transcriptional output of the Salvador/Warts/Hippo pathway is controlled in distinct fashions in Drosophila melanogaster, and mammalian cell lines. Cancer Res 69: 6033–6041.

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q et al. (2011). Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25: 51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev 21: 2747–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P Burke for embryo injections and N Chang for technical assistance. We also thank the BBSRC and EPSRC for funding to LA; Scottish University Life Science Alliance for funding to SM. KFH holds Career Development Awards from the International Human Frontier Science Program Organization and the National Health and Medical Research Council of Australia and a Project Grant from the National Health and Medical Research Council of Australia. AS holds Melbourne International Research and Fee Remission Scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Gunn-Moore.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angus, L., Moleirinho, S., Herron, L. et al. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene 31, 238–250 (2012). https://doi.org/10.1038/onc.2011.224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.224

Keywords

Search

Quick links