Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer

Abstract

Human breast tumors comprise a minor sub-population of tumor-initiating cells (TICs), commonly termed cancer stem cells. TICs are thought to sustain tumor growth and to confer resistance to current anticancer therapies. Hence, targeting TIC may be essential to achieving durable cancer cures. To identify molecular targets in breast TIC, we employed a transgenic mouse model of ERBB2 breast cancer; tumors arising in this model comprise a very high frequency of TIC, which is maintained in tumor cell populations propagated in vitro as non-adherent tumorspheres. The Notch pathway is dysregulated in human breast tumors and overexpression of constitutively active Notch proteins induces mammary tumors in mice. The Notch pathway has also been implicated in stem cell processes including those of mammary epithelial stem cells. Hence, we investigated the potential that the Notch pathway is required for TIC activity. We found that an antagonist of Notch signaling, a gamma (γ)-secretase inhibitor termed MRK-003, inhibited the survival of tumorsphere-derived cells in vitro and eliminated TIC as assessed by cell transplantation into syngeneic mice. Whereas MRK-003 also inhibited the self-renewal and/or proliferation of mammosphere-resident cells, this effect of the inhibitor was reversible thus suggesting that it did not compromise the survival of these cells. MRK-003 administration to tumor-bearing mice eliminated tumor-resident TIC and resulted in rapid and durable tumor regression. MRK-003 inhibited the proliferation of tumor cells, and induced their apoptosis and differentiation. These findings suggest that MRK-003 targets breast TIC and illustrate that eradicating these cells in breast tumors ensures long-term, recurrence-free survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Borowsky AD, Munn RJ, Galvez JJ, Cardiff RD, Ward JM, Morse III HC et al. (2004). Mouse models of human cancers (part 3). Comp Med 54: 258–270.

    CAS  PubMed  Google Scholar 

  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3: 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K et al. (2006). The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 293: 565–580.

    Article  CAS  PubMed  Google Scholar 

  • Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI . (2005). Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19: 2331–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardiff RD . (2003). Mouse models of human breast cancer. Comp Med 53: 250–253.

    CAS  PubMed  Google Scholar 

  • Cardiff RD, Wagner U, Henninghausen L . (2001). Mammary cancer in humans and mice: a tutorial for comparative pathology. Vet Pathol 38: 357–358.

    Article  CAS  PubMed  Google Scholar 

  • Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Tham YL et al. (2005). Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J Clin Oncol 23: 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  • Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138: 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106: 13820–13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullion K, Draheim KM, Hermance N, Tammam J, Sharma VM, Ware C et al. (2009). Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 113: 6172–6181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS . (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: R605–R615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efferson CL, Winkelmann CT, Ware C, Sullivan T, Giampaoli S, Tammam J et al. (2010). Downregulation of Notch pathway by a gamma-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res 70: 2476–2484.

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66: 7445–7452.

    Article  CAS  PubMed  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, Kuperwasser C et al. (2010). Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 17: 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakarala M, Wicha MS . (2008). Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26: 2813–2820.

    Article  PubMed  Google Scholar 

  • Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzalez A, Carbone DP et al. (2007). Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 67: 8051–8057.

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MX . (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137: 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurpios NA, MacNeil L, Shepherd TG, Gludish DW, Giacomelli AO, Hassell JA . (2009). The Pea3 Ets transcription factor regulates differentiation of multipotent progenitor cells during mammary gland development. Dev Biol 325: 106–121.

    Article  CAS  PubMed  Google Scholar 

  • Lewis HD, Leveridge M, Strack PR, Haldon CD, O′Neil J, Kim H et al. (2007). Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14: 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  • Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M et al. (2007). Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 67: 8131–8138.

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163: 2113–2126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E . (2007). Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 67: 8671–8681.

    Article  CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S . (1995). Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121: 2633–2644.

    CAS  PubMed  Google Scholar 

  • Rao SS, O′Neil J, Liberator CD, Hardwick JS, Dai X, Zhang T et al. (2009). Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res 69: 3060–3068.

    Article  CAS  PubMed  Google Scholar 

  • Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M et al. (2008). Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3: 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S . (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  • Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR et al. (2002). Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol 161: 1087–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawey ET, Crawford HC . (2008). Metalloproteinases and cell fate: Notch just ADAMs anymore. Cell Cycle 7: 566–569.

    Article  CAS  PubMed  Google Scholar 

  • Sawey ET, Johnson JA, Crawford HC . (2007). Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci USA 104: 19327–19332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ, Hassell JA . (2001). The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol 11: 1739–1748.

    Article  CAS  PubMed  Google Scholar 

  • Siegel PM, Dankort DL, Hardy WR, Muller WJ . (1994). Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 14: 7068–7077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel PM, Muller WJ . (1996). Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc Natl Acad Sci USA 93: 8878–8883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalley MJ, Titley J, O'Hare MJ . (1998). Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In vitro Cell Dev Biol Anim 34: 711–721.

    Article  CAS  PubMed  Google Scholar 

  • Stingl J, Eaves CJ, Kuusk U, Emerman JT . (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63: 201–213.

    Article  CAS  PubMed  Google Scholar 

  • Tammam J, Ware C, Efferson C, O'Neil J, Rao S, Qu X et al. (2009). Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol 158: 1183–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner KU, Raffoul W, Brisken C . (2010). Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differentiation 17: 1600–1612.

    Article  CAS  PubMed  Google Scholar 

  • Youn BS, Sen A, Behie LA, Girgis-Gabardo A, Hassell JA . (2006). Scale-up of breast cancer stem cell aggregate cultures to suspension bioreactors. Biotechnol Prog 22: 801–810.

    Article  CAS  PubMed  Google Scholar 

  • Youn BS, Sen A, Kallos MS, Behie LA, Girgis-Gabardo A, Kurpios N et al. (2005). Large-scale expansion of mammary epithelial stem cell aggregates in suspension bioreactors. Biotechnol Prog 21: 984–993.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Yang Y, Nolo R, Zweidler-McKay PA, Hughes DP . (2010). Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene 29: 2916–2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Stem Cell Network, Canadian Breast Cancer Foundation (CBCF) and the Terry Fox Research Institute/Ontario Institute for Cancer Research provided operating grants to JAH to support the research described herein. MK is the recipient of a CBCF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Hassell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondratyev, M., Kreso, A., Hallett, R. et al. Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 31, 93–103 (2012). https://doi.org/10.1038/onc.2011.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.212

Keywords

This article is cited by

Search

Quick links