Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation

Abstract

It has been suggested that adenosine monophosphate-activated protein kinase (AMPK) and 12 AMPK-related kinases (ARK), including novel (nua) kinase family 1 (NUAK1), are activated by master kinase LKB1, a major tumor suppressor. Apart from evidence to suggest that NUAK1 participates in induction of tumor survival, invasion and p53-independent cellular senescence, its detailed biological functions remain unclear. Here we showed that in the presence of wild-type LKB1, NUAK1 directly interacts with and phosphorylates p53 in vitro and in vivo. The phosphorylation of p53 induced by LKB1 required the kinase activity of NUAK1 and phosphorylation of NUAK1 at Thr211 by LKB1 was essential for its kinase activity, which leads to the conclusion that LKB1 activates NUAK1 and regulates phosphorylation of p53 through the NUAK1 kinase, at least partially. LKB1/NUAK1 activation leads to cell cycle arrest at the G1/S border by inducing expression of p21/WAF1. Under the regulation of LKB1, NUAK1 interacts with p53 in the nucleus and binds to the p53-responsive element of p21/WAF1 promoter. These findings have highlighted a novel role for NUAK1 in LKB1-related signaling pathways; NUAK1 can regulate cell proliferation and exert tumor suppression through direct interaction with p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164–171.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Gil J, Bernard D, Martinez D, Beach D . (2004). Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6: 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. (1998). A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391: 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM . (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21 (CIP1), but not p16(INK4a). Mol Cell 14: 501–513.

    Article  CAS  PubMed  Google Scholar 

  • Humbert N, Navaratnam N, Augert A, Da Costa M, Martien S, Wang J et al. (2010). Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J 29: 376–386.

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H . (2001). Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 287: 562–567.

    Article  CAS  PubMed  Google Scholar 

  • Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al. (1998). Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18: 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M . (2003). Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3′-phosphate kinase/PTEN pathway. Cancer Res 63: 1382–1388.

    CAS  PubMed  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18: 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Karuman P, Gozani O, Odze RD, Zhou XC, Zhu H, Shaw RJ et al. (2001). The Peutz–Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7: 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  • Kusakai G, Suzuki A, Ogura T, Kaminishi M, Esumi H . (2004a). Strong association of ARK5 with tumor invasion and metastasis. J Exp Clin Cancer Res 23: 263–268.

    CAS  PubMed  Google Scholar 

  • Kusakai G, Suzuki A, Ogura T, Miyamoto S, Ochiai A, Kaminishi I et al. (2004b). ARK5 expression in colorectal cancer and its implications for tumor progression. Am J Pathol 164: 987–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23: 833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SG, St Johnston D . (2003). A role for drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421: 379–384.

    Article  CAS  PubMed  Google Scholar 

  • Niesler CU, Myburgh KH, Moore F . (2007). The changing AMPK expression profile in differentiating mouse skeletal muscle myoblast cells helps confer increasing resistance to apoptosis. Exp Physiol 92: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Resnick-Silverman L, St Clair S, Maurer M, Zhao K, Manfredi JJ . (1998). Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev 12: 2102–2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E et al. (2002). ATM mediates phosphorylation at multiple p53 sites, including Ser (46), in response to ionizing radiation. J Biol Chem 2771: 2491–12494.

    Google Scholar 

  • Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A et al. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24: 1810–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapkota GP, Boudeau J, Deak M, Kieloch A, Morrice N, Alessi DR . (2002). Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz–Jeghers cancer syndrome. Biochem J 362: 481–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, Depinho RA et al. (2004a). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. (2004b). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Esumi H . (2003a). ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene 22: 6177–6182.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Lavin MF et al. (2003b). Identification of a novel protein kinase mediating Akt survival signaling to the ATM protein. J Biol Chem 278: 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Miyamoto S, Ogura T et al. (2004a). Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene 23: 7067–7075.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Lu J, Kusakai G, Kishimoto A, Ogura T, Esumi H . (2004b). ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol 24: 3526–3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Kusakai G, Shimojo Y, Chen J, Ogura T, Kobayashi M et al. (2005). Involvement of transforming growth factor-β1 signaling in hypoxia-induced tolerance to glucose starvation. J Biol Chem 280: 31557–31563.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Ogura T, Esumi H . (2006). NDR2 acts as the upstream kinase of ARK5 during insulin-like growth factor-1 signaling. J Biol Chem 281: 13915–13921.

    Article  CAS  PubMed  Google Scholar 

  • Tiainen M, Ylikorkala A, Mäkelä TP . (1999). Growth suppression by Lkb1 is mediated by a G1 cell cycle arrest. Proc Natl Acad Sci USA 96: 9248–9251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods DB, Vousden KH . (2001). Regulation of p53 function. Exp Cell Res 264: 56–66.

    Article  CAS  PubMed  Google Scholar 

  • Zeng PY, Berger SL . (2006). LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res 66: 10701–10708.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Tingmao Hu for helpful discussion. We are grateful to Dr Jinghua Yan for providing the plasmids. This study was supported by the Key Project of the Science and Technology Foundation of Education Ministry of China (209025) and the Key Project of the Inner Mongolia National Natural Science Foundation (2009ZD007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Hou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Liu, JE., Liu, W. et al. A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation. Oncogene 30, 2933–2942 (2011). https://doi.org/10.1038/onc.2011.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.19

Keywords

This article is cited by

Search

Quick links