Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Opposite modifying effects of HR and NHEJ deficiency on cancer risk in Ptc1 heterozygous mouse cerebellum

Abstract

Heterozygous Patched1 (Ptc1+/−) mice are prone to medulloblastoma (MB), and exposure of newborn mice to ionizing radiation dramatically increases the frequency and shortens the latency of MB. In Ptc1+/− mice, MB is characterized by loss of the normal remaining Ptc1 allele, suggesting that genome rearrangements may be key events in MB development. Recent evidence indicates that brain tumors may be linked to defects in DNA-damage repair processes, as various combinations of targeted deletions in genes controlling cell-cycle checkpoints, apoptosis and DNA repair result in MB in mice. Non-homologous end joining (NHEJ) and homologous recombination (HR) contribute to genome stability, and deficiencies in either pathway predispose to genome rearrangements. To test the role of defective HR or NHEJ in tumorigenesis, control and irradiated Ptc1+/− mice with two, one or no functional Rad54 or DNA–protein kinase catalytic subunit (DNA–PKcs) alleles were monitored for MB development. We also examined the effect of Rad54 or DNA–PKcs deletion on the processing of endogenous and radiation-induced double-strand breaks (DSBs) in neural precursors of the developing cerebellum, the cells of origin of MB. We found that, although HR and NHEJ collaborate in protecting cells from DNA damage and apoptosis, they have opposite roles in MB tumorigenesis. In fact, although Rad54 deficiency increased both spontaneous and radiation-induced MB development, DNA–PKcs disruption suppressed MB tumorigenesis. Together, our data provide the first evidence that Rad54-mediated HR in vivo is important for suppressing tumorigenesis by maintaining genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allen C, Kurimasa A, Brenneman MA, Chen DJ, Nickoloff JA . (2002). DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci USA 99: 3758–3763.

    Article  CAS  Google Scholar 

  • Bakhshi S, Cerosaletti KM, Concannon P, Bawle EV, Fontanesi J, Gatti RA et al. (2003). Medulloblastoma with adverse reaction to radiation therapy in nijmegen breakage syndrome. J Pediatr Hematol Oncol 25: 248–251.

    Article  Google Scholar 

  • Baumann P, Benson FE, West SC . (1996). Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87: 757–766.

    Article  CAS  Google Scholar 

  • Cahill D, Connor B, Carney JP . (2006). Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 11: 1958–1976.

    Article  CAS  Google Scholar 

  • Couëdel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD et al. (2004). Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18: 1293–1304.

    Article  Google Scholar 

  • Deans B, Griffin CS, O'Regan P, Jasin M, Thacker J . (2003). Homologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice. Cancer Res 63: 8181–8187.

    CAS  Google Scholar 

  • Espejel S, Martín M, Klatt P, Martín-Caballero J, Flores JM, Blasco MA . (2004). Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Rep 5: 503–509.

    Article  CAS  Google Scholar 

  • Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D et al. (1997). Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89: 195–204.

    Article  CAS  Google Scholar 

  • Essers J, van Steeg H, de Wit J, Swagemakers SM, Vermeij M, Hoeijmakers JH et al. (2000). Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J 19: 1703–1710.

    Article  CAS  Google Scholar 

  • Frappart PO, Lee Y, Lamont J, McKinnon PJ . (2007). BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 26: 2732–2742.

    Article  CAS  Google Scholar 

  • Frappart PO, Lee Y, Russell HR, Chalhoub N, Wang YD, Orii KE et al. (2009). Recurrent genomic alterations characterize medulloblastoma arising from DNA double-strand break repair deficiency. Proc Natl Acad Sci USA 106: 1880–1885.

    Article  CAS  Google Scholar 

  • Griffin CS, Simpson PJ, Wilson CR, Thacker J . (2000). Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2: 757–761.

    Article  CAS  Google Scholar 

  • Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A . (1998). Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4: 619–622.

    Article  CAS  Google Scholar 

  • Holcomb VB, Rodier F, Choi Y, Busuttil RA, Vogel H, Vijg J et al. (2008). Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response. Cancer Res 68: 9497–9502.

    Article  CAS  Google Scholar 

  • Holcomb VB, Vogel H, Marple T, Kornegay RW, Hasty P . (2006). Ku80 and p53 suppress medulloblastoma that arise independent of Rag-1-induced DSBs. Oncogene 25: 7159–7165.

    Article  CAS  Google Scholar 

  • Lee Y, McKinnon PJ . (2002). DNA ligase IV suppresses medulloblastoma formation. Cancer Res 62: 6395–6399.

    CAS  PubMed  Google Scholar 

  • Levanat S, Gorlin RJ, Fallet S, Johnson DR, Fantasia JE, Bale AE . (1996). A two-hit model for developmental defects in Gorlin syndrome. Nat Genet 12: 85–87.

    Article  CAS  Google Scholar 

  • Li H, Vogel H, Holcomb VB, Gu Y, Hasty P . (2007). Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 27: 8205–8214.

    Article  CAS  Google Scholar 

  • Li X, Heyer WD . (2008). Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 1: 99–113.

    Article  Google Scholar 

  • Liu Y, Shete S, Wang LE, El-Zein R, Etzel CJ, Liang FW et al. (2010). Gamma-radiation sensitivity and polymorphisms in RAD51L1 modulate glioma risk. Carcinogenesis 31: 1762–1769.

    Article  CAS  Google Scholar 

  • Mancuso M, Pazzaglia S, Tanori M, Hahn H, Merola P, Rebessi S et al. (2004). Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res 3: 934–941.

    Article  Google Scholar 

  • Marino S . (2005). Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11: 17–22.

    Article  CAS  Google Scholar 

  • Matsuda M, Miyagawa K, Takahashi M, Fukuda T, Kataoka T, Asahara T et al. (1999). Mutations in the RAD54 recombination gene in primary cancers. Oncogene 18: 3427–3430.

    Article  CAS  Google Scholar 

  • McKinnon PJ . (2009). DNA repair deficiency and neurological disease. Nat Rev Neurosci 10: 100–112.

    Article  CAS  Google Scholar 

  • Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW . (2004). Rad54 and DNA ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18: 1283–1292.

    Article  CAS  Google Scholar 

  • Moynahan ME, Jasin M . (1997). Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci USA 19: 948988–948993.

    Google Scholar 

  • Offit K, Levran O, Mullaney B, Mah K, Nafa K, Batish SD et al. (2003). Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J Natl Cancer Inst 95: 1548–1551.

    Article  CAS  Google Scholar 

  • Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT et al. (2005). Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132: 2425–2439.

    Article  CAS  Google Scholar 

  • Pazzaglia S, Mancuso M, Atkinson MJ, Tanori M, Rebessi S, Di Majo V et al. (2002). High incidence of medulloblastoma following X-ray-irradiation of newborn Ptc1 heterozygous mice. Oncogene 49: 7580–7584.

    Article  Google Scholar 

  • Pazzaglia S, Pariset L, Rebessi S, Saran A, Coppola M, Covelli V et al. (2000). Somatic cell hybrids for high-density mapping of chromosome 2 breakpoints in radiation-induced myeloid leukemia cell lines from inbred mice. Mol Carcinog 27: 219–228.

    Article  CAS  Google Scholar 

  • Pazzaglia S, Tanori M, Mancuso M, Gessi M, Pasquali E, Leonardi S et al. (2006a). Two-hit model for progression of medulloblastoma preneoplasia in patched heterozygous mice. Oncogene 40: 5575–5580.

    Article  Google Scholar 

  • Pazzaglia S, Tanori M, Mancuso M, Rebessi S, Leonardi S, Di Majo V et al. (2006b). Linking DNA damage to medulloblastoma tumorigenesis in patched heterozygous knockout mice. Oncogene 25: 1165–1173.

    Article  CAS  Google Scholar 

  • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE . (2001). Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7: 293–300.

    Article  CAS  Google Scholar 

  • Pierce AJ, Hu P, Han M, Ellis N, Jasin M . (2001). Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15: 3237–3242.

    Article  CAS  Google Scholar 

  • Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C et al. (2004). Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA 101: 2410–2415.

    Article  CAS  Google Scholar 

  • Schmuckli-Maurer J, Rolfsmeier M, Nguyen H, Heyer WD . (2003). Genome instability in rad54 mutants of Saccharomyces cerevisiae. Nucleic Acids Res 31: 1013–1023.

    Article  CAS  Google Scholar 

  • Smiraldo PG, Gruver AM, Osborn JC, Pittman DL . (2005). Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res 65: 2089–2096.

    Article  CAS  Google Scholar 

  • Sung P . (1994). Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265: 1241–1243.

    Article  CAS  Google Scholar 

  • Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI et al. (1998). Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9: 355–366.

    Article  CAS  Google Scholar 

  • Tanori M, Mancuso M, Pasquali E, Leonardi S, Rebessi S, Di Majo V et al. (2008). PARP-1 cooperates with Ptc1 to suppress medulloblastoma and basal cell carcinoma. Carcinogenesis 29: 1911–1919.

    Article  CAS  Google Scholar 

  • Tischfield JA, Shao C . (2003). Somatic recombination redux. Nat Genet 1: 5–6.

    Article  Google Scholar 

  • Tong WM, Ohgaki H, Huang H, Granier C, Kleihues P, Wang ZQ . (2003). Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(−/−) mice. Am J Pathol 162: 343–352.

    Article  CAS  Google Scholar 

  • Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J et al. (1999). Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9: 1107–1110.

    Article  CAS  Google Scholar 

  • Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P . (1999). Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA 96: 10770–10775.

    Article  CAS  Google Scholar 

  • Wang W, Seki M, Narita Y, Sonoda E, Takeda S, Yamada K et al. (2000). Possible association of BLM in decreasing DNA double strand breaks during DNA replication. EMBO J 19: 3428–3435.

    Article  CAS  Google Scholar 

  • Weinstock DM, Jasin M . (2006). Alternative pathways for the repair of RAG-induced DNA breaks. Mol Cell Biol 26: 131–139.

    Article  CAS  Google Scholar 

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW et al. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3: 389–395.

    Article  CAS  Google Scholar 

  • Yan CT, Kaushal D, Murphy M, Zhang Y, Datta A, Chen C et al. (2006). XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc Natl Acad Sci USA 103: 7378–7383.

    Article  CAS  Google Scholar 

  • Yoshihara T, Ishida M, Kinomura A, Katsura M, Tsuruga T, Tashiro S et al. (2004). XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells. EMBO J 23: 670–680.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by EU Contract FI6R-CT-2003-508842 RISC-RAD, by Grant 10357 from the Associazione Italiana Ricerca sul Cancro (AIRC) and the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Saran or S Pazzaglia.

Ethics declarations

Competing interests

The authors declare no conict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanori, M., Pasquali, E., Leonardi, S. et al. Opposite modifying effects of HR and NHEJ deficiency on cancer risk in Ptc1 heterozygous mouse cerebellum. Oncogene 30, 4740–4749 (2011). https://doi.org/10.1038/onc.2011.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.178

Keywords

Search

Quick links