Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53- and p21-dependent premature APC/C–Cdh1 activation in G2 is part of the long-term response to genotoxic stress

Abstract

The long-term cellular response to DNA damage is controlled by the tumor suppressor p53. It results in cell-cycle arrest followed by DNA repair and, depending on the degree of damage inflicted, premature senescence or apoptotic cell death. Here we show that in normal diploid fibroblasts the ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C)–Cdh1 becomes prematurely activated in G2 as part of the sustained long-term but not the rapid short-term response to genotoxic stress and results in the degradation of numerous APC/C substrates. Using HCT116 somatic knockout cells we show that mechanistically premature APC/C activation depends on p53 and its transcriptional target p21 that mediates the signal through downregulation of the APC/C inhibitor Emi1. Cdc14B is dispensable in this setting but might function redundantly. Our data suggest an unexpected role for the APC/C in executing a part of the p53-dependent DNA damage response that leads to premature senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Allan LA, Fried M . (1999). p53-dependent apoptosis or growth arrest induced by different forms of radiation in U2OS cells: p21WAF1/CIP1 repression in UV induced apoptosis. Oncogene 18: 5403–5412.

    Article  CAS  Google Scholar 

  • Amador V, Ge S, Santamaría PG, Guardavaccaro D, Pagano M . (2007). APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 27: 462–473.

    Article  CAS  Google Scholar 

  • Andreassen PR, Lacroix FB, Lohez OD, Margolis RL . (2001b). Neither p21WAF1 nor 14-3-3sigma prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res 61: 7660–7668.

    CAS  Google Scholar 

  • Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . (2001a). Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1 . Mol Biol Cell 12: 1315–1328.

    Article  CAS  Google Scholar 

  • Bahassi el M, Conn CW, Myer DL, Hennigan RF, McGowan CH, Sanchez Y et al. (2002). Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 21: 6633–6640.

    Article  Google Scholar 

  • Banerjee T, Nath S, Roychoudhury S . (2009). DNA damage induced p53 downregulates Cdc20 by direct binding to its promoter causing chromatin remodeling. Nucleic Acids Res 37: 2688–2698.

    Article  CAS  Google Scholar 

  • Bartek J, Bartkova J, Lukas J . (2007). DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26: 7773–7779.

    Article  CAS  Google Scholar 

  • Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M . (2004). Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428: 190–193.

    Article  CAS  Google Scholar 

  • Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M . (2008). The Cdc14B–Cdh1–Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134: 256–267.

    Article  CAS  Google Scholar 

  • Baus F, Gire V, Fisher D, Piette J, Dulic V . (2003). Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 22: 3992–4002.

    Article  CAS  Google Scholar 

  • Berdougo E, Nachury MV, Jackson PK, Jallepalli PV . (2008). The nucleolar phosphatase Cdc14B is dispensable for chromosome segregation and mitotic exit in human cells. Cell Cycle 7: 1184–1190.

    Article  CAS  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM . (2008). CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14: 159–169.

    Article  CAS  Google Scholar 

  • Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A . (2003). Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278: 25752–25757.

    Article  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  Google Scholar 

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59: 3761–3767.

    CAS  Google Scholar 

  • Demidenko ZN, Blagosklonny MV . (2008). Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7: 3355–3361.

    Article  CAS  Google Scholar 

  • Di Fiore B, Pines J . (2007). Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J Cell Biol 177: 425–437.

    Article  CAS  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K, Wahl GM . (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8: 2540–2551.

    Article  CAS  Google Scholar 

  • Duursma A, Agami R . (2005). p53-dependent regulation of Cdc6 protein stability controls cellular proliferation. Mol Cell Biol 25: 6937–6947.

    Article  CAS  Google Scholar 

  • Gillis LD, Leidal AM, Hill R, Lee PW . (2009). p21Cip1/WAF1 mediates cyclin B1 degradation in response to DNA damage. Cell Cycle 8: 253–256.

    Article  CAS  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J . (2008). An oncogene-induced DNA damage model for cancer development. Science 319: 1352–1355.

    Article  CAS  Google Scholar 

  • Hansen DV, Loktev AV, Ban KH, Jackson PK . (2004). Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC inhibitor Emi1. Mol Biol Cell 15: 5623–5634.

    Article  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ . (2007). MicroRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 7: 819–822.

    Article  CAS  Google Scholar 

  • Hermeking H . (2007). p53 enters the microRNA world. Cancer Cell 12: 414–418.

    Article  CAS  Google Scholar 

  • Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK . (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 4: 358–366.

    Article  CAS  Google Scholar 

  • Jackson MW, Aquarwal MK, Yang J, Bruss P, Uchiumi T, Aquarwal ML et al. (2005). p130/7p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2 . J Cell Sci 118: 1821–1832.

    Article  CAS  Google Scholar 

  • Janicke RU, Sohn D, Essmann F, Schulze-Osthoff K . (2007). The multiple battles fought by antiapoptotic p21. Cell Cycle 6: 407–413.

    Article  Google Scholar 

  • Kan Q, Jinno S, Yamamoto H, Kobayashi K, Okayama H . (2008). ATP-dependent activation of p21WAF1/CIP1-associated Cdk2 by Cdc6. Proc Natl Acad Sci USA 105: 4757–4762.

    Article  CAS  Google Scholar 

  • Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K . (2008). CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene 27: 1562–1571.

    Article  CAS  Google Scholar 

  • Kob R, Kelm J, Posorski N, Baniahmad A, von Eggeling F, Melle C . (2009). Regulation of the anaphase-promoting complex by the COP9 signalosome. Cell Cycle 8: 2041–2049.

    Article  CAS  Google Scholar 

  • Kurose A, Tanaka T, Huang X, Traganos F, Darzynkiewicz Z . (2006). Synchronization in the cell cycle by inhibitors of DNA replication induces histone H2AX phosphorylation: an indication of DNA damage. Cell Prolif 39: 231–240.

    Article  CAS  Google Scholar 

  • Lee J, Kim JA, Barbier V, Fotedar A, Fotedar R . (2009). DNA damage triggers p21WAF1-dependent Emi1 downregulation that maintains G2 arrest. Mol Biol Cell 20: 1891–1902.

    Article  CAS  Google Scholar 

  • Liu W, Wu G, Li W, Lobur D, Wan Y . (2007). Cdh1-anaphase-promoting complex targets Skp2 for destruction in transforming growth factor beta-induced growth inhibition. Mol Cell Biol 27: 2967–2979.

    Article  CAS  Google Scholar 

  • Löhr K, Möritz C, Contente A, Dobbelstein M . (2003). p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278: 32507–32516.

    Article  Google Scholar 

  • Machida YJ, Dutta A . (2007). The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev 21: 184–194.

    Article  CAS  Google Scholar 

  • Mailand N, Diffley JF . (2005). CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122: 915–926.

    Article  CAS  Google Scholar 

  • Matthew EM, Yen TJ, Dicker DT, Dorsey JF, Yang W, Navaraj A et al. (2007). Replication stress, defective S-phase checkpoint and increased death in Plk2-deficient human cancer cells. Cell Cycle 6: 2571–2578.

    Article  CAS  Google Scholar 

  • Moshe Y, Boulaire J, Pagano M, Hershko A . (2004). Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci USA 101: 7937–7942.

    Article  CAS  Google Scholar 

  • Nayak BK, Das GM . (2002). Stabilization of p53 and transactivation of its target genes in response to replication blockade. Oncogene 21: 7226–7229.

    Article  CAS  Google Scholar 

  • Peters JM . (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7: 644–656.

    Article  CAS  Google Scholar 

  • Pfleger CM, Kirschner MW . (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14: 655–665.

    CAS  Google Scholar 

  • Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B . (1996). Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10: 1945–1952.

    Article  CAS  Google Scholar 

  • Rodier G, Coulombe P, Tanguay PL, Boutonnet C, Meloche S . (2008). Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. EMBO J 27: 679–691.

    Article  CAS  Google Scholar 

  • Schmitt CA . (2003). Senescence, apoptosis and therapy—cutting the lifelines of cancer. Nat Rev Cancer 3: 286–295.

    Article  CAS  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  Google Scholar 

  • Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH . (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2: 672–676.

    Article  CAS  Google Scholar 

  • Spurgers KB, Gold DL, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE et al. (2006). Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 281: 25134–25142.

    Article  CAS  Google Scholar 

  • St Clair S, Giono L, Varmeh-Ziaie S, Resnick-Silverman L, Liu WJ, Padi A et al. (2004). DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell 16: 725–736.

    Article  Google Scholar 

  • Sudo T, Ota Y, Kotani S, Nakao M, Takami Y, Takeda S et al. (2001). Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J 20: 6499–6508.

    Article  CAS  Google Scholar 

  • Summers MK, Pan B, Mukhyala K, Jackson PK . (2008). The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 31: 544–556.

    Article  CAS  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B . (1996). Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

    Article  CAS  Google Scholar 

  • Wang W, Nacusi L, Sheaff RJ, Liu X . (2005). Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection. Biochemistry 44: 14553–14564.

    Article  CAS  Google Scholar 

  • Wäsch R, Robbins JA, Cross FR . (2010). The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29: 1–10.

    Article  Google Scholar 

  • Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin Jr WG . (2004). Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428: 194–198.

    Article  CAS  Google Scholar 

  • Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C et al. (2001). Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 276: 43305–43312.

    Article  CAS  Google Scholar 

  • Yu J, Zhang L . (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331: 851–858.

    Article  CAS  Google Scholar 

  • Yu ZK, Gervais JL, Zhang H . (1998). Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 95: 11324–11329.

    Article  CAS  Google Scholar 

  • Zhang D, Zaugg K, Mak TW, Elledge SJ . (2006). A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126: 529–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eli Berdougo, Philipp Haemmati, Christoph Hanski, Hans-Jürgen Heidebrecht, Prasad Jallepalli, Bert Vogelstein and Ralph Wäsch for the generous supply of reagents. We acknowledge Matthias Truss for help with lentivirus production and Ralf Uecker for excellent technical assistance. This work was supported by Grants HA1575/2-1 and WI2043/2-2 from the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wiebusch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiebusch, L., Hagemeier, C. p53- and p21-dependent premature APC/C–Cdh1 activation in G2 is part of the long-term response to genotoxic stress. Oncogene 29, 3477–3489 (2010). https://doi.org/10.1038/onc.2010.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.99

Keywords

This article is cited by

Search

Quick links