Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The immortalizing and transforming ability of two common human papillomavirus 16 E6 variants with different prevalences in cervical cancer

Abstract

Persistent infection with high-risk human papillomaviruses (HPVs), especially type 16 has been undeniably linked to cervical cancer. The Asian-American (AA) variant of HPV16 is more common in the Americas than the prototype in cervical cancer. The different prevalence is based on three amino acid changes within the E6 protein denoted Q14H/H78Y/L83V. To investigate the mechanism(s) behind this observation, both E6 proteins, in the presence of E7, were evaluated for their ability to extend the life span of and transform primary human foreskin keratinocytes (PHFKs). Long-term cell culture studies resulted in death at passage 9 of vector-transduced PHFKs (negative control), but survival of both E6 PHFKs to passage 65 (and beyond). Compared with E6/E7 PHFKs, AA/E7 PHFKs were significantly faster dividing, developed larger cells in monolayer cultures, showed double the epithelial thickness and expressed cytokeratin 10 when grown as organotypic raft cultures. Telomerase activation and p53 inactivation, two hallmarks of immortalization, were not significantly different between the two populations. Both were resistant to anoikis at later passages, but only AA/E7 PHFKs acquired the capacity for in vitro transformation. Proteomic analysis revealed markedly different protein patterns between E6/E7 and AA/E7, particularly with respect to key cellular metabolic enzymes. Our results provide new insights into the reasons underlying the greater prevalence of the AA variant in cervical cancer as evidenced by characteristics associated with higher oncogenic potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Allen-Hoffmann BL, Schlosser SJ, Ivarie CA, Sattler CA, Meisner LF, O'Connor SL . (2000). Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J Invest Dermatol 114: 444–455.

    Article  CAS  PubMed  Google Scholar 

  • Androphy EJ, Schiller JT, Lowy DR . (1985). Identification of the protein encoded by the E6 transforming gene of bovine papillomavirus. Science 230: 442–445.

    Article  CAS  PubMed  Google Scholar 

  • Asadurian Y, Kurilin H, Lichtig H, Jackman A, Gonen P, Tommasino M et al. (2007). Activities of human papillomavirus 16 E6 natural variants in human keratinocytes. J Med Virol 79: 1751–1760.

    Article  CAS  PubMed  Google Scholar 

  • Bernard HU . (2005). The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. J Clin Virol 32 (Suppl 1): S1–S6.

    Article  PubMed  Google Scholar 

  • Bernard HU, Calleja-Macias IE, Dunn ST . (2006). Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer 118: 1071–1076.

    Article  CAS  PubMed  Google Scholar 

  • Berumen J, Ordonez RM, Lazcano E, Salmeron J, Galvan SC, Estrada RA et al. (2001). Asian-American variants of human papillomavirus 16 and risk for cervical cancer: a case-control study. J Natl Cancer Inst 93: 1325–1330.

    Article  CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Camus S, Menendez S, Cheok CF, Stevenson LF, Lain S, Lane DP . (2007). Ubi-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 26: 4059–4070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carujo S, Estanyol JM, Ejarque A, Agell N, Bachs O, Pujol MJ . (2006). Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene 25: 4033–4042.

    Article  CAS  PubMed  Google Scholar 

  • Castellsague X . (2008). Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 110: S4–S7.

    Article  PubMed  Google Scholar 

  • Chakrabarti O, Veeraraghavalu K, Tergaonkar V, Liu Y, Androphy EJ, Stanley MA et al. (2004). Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J Virol 78: 5934–5945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD . (2005). Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol 79: 7014–7023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal S, Gao Q, Androphy EJ, Band V . (1996). Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. J Virol 70: 683–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Araujo Souza PS, Sichero L, Maciaq PC . (2009). HPV variants and HLA polymorphisms: the role of variability on the risk of cervical cancer. Future Oncol 5: 359–370.

    Article  PubMed  Google Scholar 

  • DeCarlo CA, Escott NG, Werner J, Robinson K, Lambert PF, Law RD et al. (2008). Gene expression analysis of interferon kappa in laser capture microdissected cervical epithelium. Anal Biochem 381: 59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu B, Quintero J, Baker CC . (2003). Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res 63: 7815–7824.

    CAS  PubMed  Google Scholar 

  • Grodzki M, Besson G, Clavel C, Arslan A, Franceschi S, Birembaut P et al. (2006). Increased risk for cervical disease progression of French women infected with the human papillomavirus type 16 E6-350G variant. Cancer Epidemiol Biomarkers Prev 15: 820–822.

    Article  CAS  PubMed  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . (1999). Creation of human tumour cells with defined genetic elements. Nature 400: 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . The hallmarks of cancer (2000). Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM . (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10: 4129–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James MA, Lee JH, Klingelhutz AJ . (2006). HPV16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer 119: 1878–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Q, Aoyama C, Nien YD, Liu P, Chen P, Chang L et al. (2004). Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on progesterone signaling. Cancer Res 64: 7610–7617.

    Article  CAS  PubMed  Google Scholar 

  • Kammer C, Tommasino M, Syrjanen S, Delius H, Hebling U, Warthorst U et al. (2002). Variants of the long control region and the E6 oncogene in European human papillomavirus type 16 isolates: implications for cervical disease. Br J Cancer 86: 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, McDougall JK . (1989). HPV-18 immortalization of human keratinocytes. Virology 173: 302–310.

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick KL, Newbold RF, Mokbel K . (2004). The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. J Carcinog 3: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingelhutz AJ, Foster SA, McDougall JK . (1996). Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H . (2008). Cellular life span and the Warburg effect. Exp Cell Res 314: 1923–1928.

    Article  CAS  PubMed  Google Scholar 

  • Kyo S, Kanaya T, Takakura M, Tanaka M, Inoue M . (1999). Human telomerase reverse transcriptase as a critical determinant of telomerase activity in normal and malignant endometrial tissues. Int J Cancer 80: 60–63.

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Magalhaes I, Clavel C, Briolat J, Birembaut P, Tommasino M et al. (2008). Human papillomavirus 16 E6, L1, L2 and E2 gene variants in cervical lesion progression. Virus Res 131: 106–110.

    Article  CAS  PubMed  Google Scholar 

  • Lichtig H, Algrisi M, Botzer LE, Abadi T, Verbitzky Y, Jackman A et al. (2006). HPV16 E6 natural variants exhibit different activities in functional assays relevant to the carcinogenic potential of E6. Virology 350: 216–227.

    Article  CAS  PubMed  Google Scholar 

  • Maddox P, Sasieni P, Szarewski A, Anderson M, Hanby A . (1999). Differential expression of keratins 10, 17, and 19 in normal cervical epithelium, cervical intraepithelial neoplasia, and cervical carcinoma. J Clin Pathol 52: 41–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconi A, Atzei P, Panza C, Fila C, Tiberio R, Truzzi F et al. (2004). FLICE/caspase-8 activation triggers anoikis induced by beta1-integrin blockade in human keratinocytes. J Cell Sci 117: 5815–5823.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E . (2001). Effects of the human papillomavirus HPV16-E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 356: 247–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMurray HR, McCance DJ . (2004). Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J Virol 78: 5698–5706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naryzhny SN, Lee H . (2007). Characterization of proliferating cell nuclear antigen (PCNA) isoforms in normal and cancer cells: there is no cancer-associated form of PCNA. FEBS Lett 581: 4917–4920.

    Article  CAS  PubMed  Google Scholar 

  • Nomine Y, Masson M, Charbonnier S, Zanier K, Ristriani T, Deryckere F et al. (2006). Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 21: 665–678.

    Article  CAS  PubMed  Google Scholar 

  • Pollard PJ, Ratcliffe PJ . (2009). Puzzling patterns of predisposition. Science 324: 192–194.

    Article  CAS  PubMed  Google Scholar 

  • Penning T, Byrns M . (2009). Steroid hormone transforming aldo-ketoreductases and cancer. Ann NY Acad Sci 1155: 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Schonk DM, Kuijpers HJ, van Drunen E, van Dalen CH, Geurts van Kessel AH, Verheijen R et al. (1989). Assignment of the gene(s) involved in the expression of the proliferation-related Ki-67 antigen to human chromosome 10. Hum Genet 83: 297–299.

    Article  CAS  PubMed  Google Scholar 

  • Seedorf K, Krammer G, Durst M, Subai S, Rowekamp WG . (1985). Human papillomavirus type 16 DNA sequence. Virology 145: 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Sekaric P, Cherry JJ, Androphy EJ . (2008). Binding of human papillomavirus type 16 E6 to E6AP is not required for activation of hTERT. J Virol 82: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Shamanin VA, Sekaric P, Androphy EJ . (2008). hAda3 degradation by papillomavirus type 16 E6 correlates with abrogation of the p14ARF-p53 pathway and efficient immortalization of human mammary epithelial cells. J Virology 82: 3912–3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen ZY, Xu LY, Li EM, Cai WJ, Shen J, Chen MH et al. (2004). The multistage process of carcinogenesis in human esophageal epithelial cells induced by human papillomavirus. Oncol Rep 11: 647–654.

    PubMed  Google Scholar 

  • Smedts F, Ramaekers F, Troyanovsky S, Pruszczynski M, Link M, Lane B et al. (1992). Keratin expression in cervical cancer. Am J Pathol 141: 497–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smedts F, Ramaekers FC, Vooijs PG . (1993). The dynamics of keratin expression in malignant transformation of cervical epithelium: a review. Obstet Gynecol 82: 465.

    CAS  PubMed  Google Scholar 

  • Song S, Gulliver GA, Lambert PF . (1998). Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. Proc Natl Acad Sci USA 95: 2290–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague DL, Phillips SL, Mitchell CJ, Berger KL, Lace M, Turek LP et al. (2002). Telomerase activation in cervical keratinocytes containing stably replicating human papillomavirus type 16 episomes. Virology 301: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Stöppler MC, Ching K, Stöppler H, Clancy K, Schlegel R, Icenogle J . (1996). Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol 70: 6987–6993.

    PubMed  PubMed Central  Google Scholar 

  • Sumida T, Hamakawa H, Sogawa K, Sugita A, Tanioka H, Ueda N . (1999). Telomerase components as a diagnostic tool in human oral lesions. Int J Cancer 80: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Tidy JA, Vousden KH, Farrell PJ . (1989). Relation between infection with a subtype of HPV16 and cervical neoplasia. Lancet 8649: 1225–1227.

    Article  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodworth CD, Bowden PE, Doniger J, Pirisi L, Barnes W, Lancaster WD et al. (1988). Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res 48: 4620–4628.

    CAS  PubMed  Google Scholar 

  • Xi LF, Koutsky LA, Galloway DA, Kuypers J, Hughes JP, Wheeler CM et al. (1997). Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. J Natl Cancer Inst 89: 796–802.

    Article  CAS  PubMed  Google Scholar 

  • Xi LF, Critchlow CW, Wheeler CM, Koutsky LA, Galloway DA, Kuypers J et al. (1998). Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res 58: 3839–3844.

    CAS  PubMed  Google Scholar 

  • Xi LF, Kiviat NB, Hildesheim A, Galloway DA, Wheeler CM, Ho J et al. (2006). Human papillomavirus type 16 and 18 variants: race-related distribution and persistence. J Natl Cancer Inst 98: 1045–1052.

    Article  PubMed  Google Scholar 

  • Xi LF, Koutsky LA, Hildesheim A, Galloway DA, Wheeler CM, Winer RL et al. (2007). Risk for high-grade cervical intraepithelial neoplasia associated with variants of human papillomavirus types 16 and 18. Cancer Epidemiol Biomarkers Prev 16: 4–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al. (2009). Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324: 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehbe I, Wilander E, Delius H, Tommasino M . (1998a). Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Res 58: 829–833.

    CAS  PubMed  Google Scholar 

  • Zehbe I, Voglino G, Delius H, Wilander E, Tommasino M . (1998b). Risk of cervical cancer and geographical variations of human papillomavirus 16 E6 polymorphisms. Lancet 352: 1441–1442.

    Article  CAS  PubMed  Google Scholar 

  • Zehbe I, Rätsch A, Alunni-Fabbroni M, Burzlaff A, Bakos E, Dürst M et al. (1999). Overriding of cyclin-dependent kinase inhibitors by high and low risk human papillomavirus types: evidence for an in vivo role in cervical lesions. Oncogene 18: 2201–2211.

    Article  CAS  PubMed  Google Scholar 

  • Zehbe I, Tachezy R, Mytilineos J, Voglino G, Mikyskova I, Delius H et al. (2001). Human papillomavirus 16 E6 polymorphisms in cervical lesions from different European populations and their correlation with human leukocyte antigen class II haplotypes. Int J Cancer 94: 711–716.

    Article  CAS  PubMed  Google Scholar 

  • Zehbe I, Mytilineos J, Wikstrom I, Henriksen R, Edler L, Tommasino M . (2003). Association between human papillomavirus 16 E6 variants and human leukocyte antigen class I polymorphism in cervical cancer of Swedish women. Hum Immunol 64: 538–542.

    Article  CAS  PubMed  Google Scholar 

  • Zehbe I, Richard C, DeCarlo CA, Shai A, Lambert PF, Lichtig H et al. (2009). Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. Virology 383: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Zwerschke W, Mannhardt B, Massimi P, Nauenburg S, Pim D, Nickel W et al. (2000). Allosteric activation of acid α-glucosidase by the human papillomavirus E7 protein. J Biol Chem 275: 9534–9541.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff from the Central Laboratory of the Thunder Bay Regional Health Sciences Centre for technical assistance and Bruce Weaver from the Northern School of Medicine, West-Campus, Thunder Bay for help with statistical analysis. This work was funded by a Discovery Grant to IZ from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Zehbe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, C., Lanner, C., Naryzhny, S. et al. The immortalizing and transforming ability of two common human papillomavirus 16 E6 variants with different prevalences in cervical cancer. Oncogene 29, 3435–3445 (2010). https://doi.org/10.1038/onc.2010.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.93

Keywords

This article is cited by

Search

Quick links