Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo

Abstract

Angiogenesis in glioblastoma is largely dependent on vascular endothelial growth factor (VEGF) signalling. Consistently, the VEGF coreceptor NRP1 promotes angiogenesis and tumour growth in gliomas. Here, we provide data showing that an innovative peptidic tool targeting the transmembrane domain of NRP1 efficiently blocks rat and human glioma growth in vivo. We show both in vivo and in vitro that the antitumour effect results from the anti-proliferative, anti-migratory and anti-angiogenic properties of the compound. The proposed NRP1 antagonizing peptide is therefore a promising novel class of anti-angiogenic drugs that might prolong glioma patient survival. Our results finally show for the first time that the transmembrane domain of important signalling receptors can be antagonized in vivo thereby providing a new avenue towards the development of atypical antagonists with strong therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG . (2009). Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28: 3537–3550.

    Article  CAS  Google Scholar 

  • Bagri A, Tessier-Lavigne M . (2002). Neuropilins as semaphorin receptors: in vivofunctions in neuronal cell migration and axon guidance. Adv Exp Med Biol 515: 13–31.

    Article  CAS  Google Scholar 

  • Bargmann CI, Weinberg RA . (1988). Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J 7: 2043–2052.

    Article  CAS  Google Scholar 

  • Barr MP, Byrne AM, Duffy AM, Condron CM, Devocelle M, Harriott P et al. (2005). A peptide corresponding to the neuropilin-1-binding site on VEGF(165) induces apoptosis of neuropilin-1-expressing breast tumour cells. Br J Cancer 92: 328–333.

    Article  CAS  Google Scholar 

  • Bedjeguelal K, Bienayme H, Dumoulin A, Poigny S, Schmitt P, Tam E . (2006). Discovery of protein-protein binding disruptors using multi-component condensations small molecules. Bioorg Med Chem Lett 16: 3998–4001.

    Article  CAS  Google Scholar 

  • Bennasroune A, Gardin A, Aunis D, Cremel G, Hubert P . (2004). Tyrosine kinase receptors as attractive targets of cancer therapy. Crit Rev Oncol Hematol 50: 23–38.

    Article  Google Scholar 

  • Forbes LV, Gale RE, Pizzey A, Pouwels K, Nathwani A, Linch DC . (2002). An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. Oncogene 21: 5981–5989.

    Article  CAS  Google Scholar 

  • Gamse JT, Shen YC, Thisse C, Thisse B, Raymond PA, Halpern ME et al. (2002). Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet 30: 117–121.

    Article  CAS  Google Scholar 

  • Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A . (1998). Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36: 234–248.

    Article  CAS  Google Scholar 

  • Giordano RJ, Anobom CD, Cardo-Vila M, Kalil J, Valente AP, Pasqualini R et al. (2005). Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors. Chem Biol 12: 1075–1083.

    Article  CAS  Google Scholar 

  • Goldbrunner RH, Wagner S, Roosen K, Tonn JC . (2000). Models for assessment of angiogenesis in gliomas. J Neurooncol 50: 53–62.

    Article  CAS  Google Scholar 

  • Grobben B, De Deyn PP, Slegers H . (2002). Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310: 257–270.

    Article  CAS  Google Scholar 

  • Guttmann-Raviv N, Kessler O, Shraga-Heled N, Lange T, Herzog Y, Neufeld G . (2006). The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 231: 1–11.

    Article  CAS  Google Scholar 

  • Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC et al. (2007). Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 13: 4759–4768.

    Article  CAS  Google Scholar 

  • Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O et al. (2007). Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26: 5577–5586.

    Article  CAS  Google Scholar 

  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT . (2007). Angiogenesis in brain tumours. Nat Rev Neurosci 8: 610–622.

    Article  CAS  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS . (2006). Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3: 24–40.

    Article  CAS  Google Scholar 

  • Jia H, Bagherzadeh A, Hartzoulakis B, Jarvis A, Lohr M, Shaikh S et al. (2006). Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. J Biol Chem 281: 13493–13502.

    Article  CAS  Google Scholar 

  • Jocic Z, Staton RD . (1993). Reduplication after right middle cerebral artery infarction. Brain Cogn 23: 222–230.

    Article  CAS  Google Scholar 

  • Kelland LR . (2004). Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40: 827–836.

    Article  CAS  Google Scholar 

  • Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T et al. (2008). Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GxxxG motifs. J Biol Chem 283: 7733–7744.

    Article  CAS  Google Scholar 

  • Klosen P, Maessen X, van den Bosch de Aguilar P . (1993). PEG embedding for immunocytochemistry: application to the analysis of immunoreactivity loss during histological processing. J Histochem Cytochem 41: 455–463.

    Article  CAS  Google Scholar 

  • Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM . (1992). Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry 31: 12719–12725.

    Article  CAS  Google Scholar 

  • Marchesi VT . (2005). An alternative interpretation of the amyloid Abeta hypothesis with regard to the pathogenesis of Alzheimer's disease. Proc Natl Acad Sci USA 102: 9093–9098.

    Article  CAS  Google Scholar 

  • Meyers GA, Orlow SJ, Munro IR, Przylepa KA, Jabs EW . (1995). Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with Acanthosis nigricans. Nat Genet 11: 462–464.

    Article  CAS  Google Scholar 

  • Nasarre C, Koncina E, Labourdette G, Cremel G, Roussel G, Aunis D et al. (2009). Neuropilin-2 acts as a modulator of Sema3A-dependent glioma cell migration. Cell Adh Migr 3: 383–389.

    Article  Google Scholar 

  • Nasarre P, Kusy S, Constantin B, Castellani V, Drabkin HA, Bagnard D et al. (2005). Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia 7: 180–189.

    Article  CAS  Google Scholar 

  • Orian-Rousseau V, Ponta H . (2008). Adhesion proteins meet receptors: a common theme? Adv Cancer Res 101: 63–92.

    Article  CAS  Google Scholar 

  • Roth L, Nasarre C, Dirrig-Grosch S, Aunis D, Cremel G, Hubert P et al. (2008). Transmembrane domain interactions control biological functions of neuropilin-1. Mol Biol Cell 19: 646–654.

    Article  CAS  Google Scholar 

  • Senes A, Engel DE, DeGrado WF . (2004). Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14: 465–479.

    Article  CAS  Google Scholar 

  • Slimani H, Guenin E, Briane D, Coudert R, Charnaux N, Starzec A et al. (2006). Lipopeptide-based liposomes for DNA delivery into cells expressing neuropilin-1. J Drug Target 14: 694–706.

    Article  CAS  Google Scholar 

  • Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, Crepin M et al. (2006). Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 79: 2370–2381.

    Article  CAS  Google Scholar 

  • Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H et al. (2004). Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114: 330–338.

    Article  CAS  Google Scholar 

  • Tessitore A, Sinisi AA, Pasquali D, Cardone M, Vitale D, Bellastella A et al. (1999). A novel case of multiple endocrine neoplasia type 2A associated with two de novo mutations of the RET protooncogene. J Clin Endocrinol Metab 84: 3522–3527.

    CAS  PubMed  Google Scholar 

  • Tirand L, Frochot C, Vanderesse R, Thomas N, Trinquet E, Pinel S et al. (2006). A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Control Release 111: 153–164.

    Article  CAS  Google Scholar 

  • Uitenbroek DG . (1997). Binomial SISA. http://www.quantitativeskills.com/sisa/distributions/binomial.htm.

  • Uzzan B, Nicolas P, Cucherat M, Perret GY . (2004). Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64: 2941–2955.

    Article  CAS  Google Scholar 

  • Wang AC, Dai X, Luu B, Conrad DJ . (2001). Peroxisome proliferator-activated receptor-gamma regulates airway epithelial cell activation. Am J Respir Cell Mol Biol 24: 688–693.

    Article  CAS  Google Scholar 

  • Webster MK, Donoghue DJ . (1996). Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 15: 520–527.

    Article  CAS  Google Scholar 

  • Weiner DB, Liu J, Cohen JA, Williams WV, Greene MI . (1989). A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature 339: 230–231.

    Article  CAS  Google Scholar 

  • Williams G, Eickholt BJ, Maison P, Prinjha R, Walsh FS, Doherty P . (2005). A complementary peptide approach applied to the design of novel semaphorin/neuropilin antagonists. J Neurochem 92: 1180–1190.

    Article  CAS  Google Scholar 

  • Xu L, Duda DG, di Tomaso E, Ancukiewicz M, Chung DC, Lauwers GY . et al. (2009). Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res 69: 7905–7910.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Sophie Reibel-Foisset and Mr Nicolas Lethenet for excellent assistance with in vivo experiments and animal care. This work was supported by INSERM, ACI JC (No. 5327), ARC, ANR Emergence bio, FRC/Rotary international to Dominique Bagnard. Cécile Nasarre was supported by Pharmaxon and La Ligue Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bagnard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasarre, C., Roth, M., Jacob, L. et al. Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene 29, 2381–2392 (2010). https://doi.org/10.1038/onc.2010.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.9

Keywords

This article is cited by

Search

Quick links