Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2α in caspase-3/7-deficient cells

Abstract

As apoptosis defects limit efficacy of anticancer agents, autophagy has been proposed as a novel strategy for radiotherapy enhancement. We previously showed that caspase-3/7 inhibition induces autophagy and promotes radiosensitivity in vitro and in vivo. Therefore, we further investigated the mechanism by which radiation triggers autophagy in caspase-3/7-deficient cells, and found the involvement of endoplasmic reticulum (ER) stress. The ER activates a survival pathway, the unfolded protein response, which involves ER-localized transmembrane proteins such as protein kinase-like ER kinase (PERK), inositol-requiring enzyme-1 and activating transcription factor-6. In this study, we found that PERK is essential for radiation-induced autophagy and radiosensitivity in caspase-3/7 double-knockout cells. Irradiation of these cells increased expression of phosphorylated-eIF2α. Similar results were seen after administration of tunicamycin (TM), a well-known ER stressor. Importantly, we found that the administration of TM with radiation in MCF-7 breast cancer cells, which are lacking functional caspase-3 and relatively resistant to many anticancer agents, enhances radiation sensitivity. Our findings reveal ER stress as a novel potential mechanism of radiation-induced autophagy in caspase-3/7-deficient cells and as a potential strategy to maximize efficiency of radiation therapy in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bernales S, McDonald KL, Walter P . (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4: e423.

    Article  Google Scholar 

  • Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR et al. (2006). Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 66: 10040–10047.

    Article  CAS  Google Scholar 

  • Dahmer MK . (2005). Caspases-2, -3, and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells. J Neurosci Res 80: 576–583.

    Article  CAS  Google Scholar 

  • Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y . (2005). Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res 65: 4368–4375.

    Article  CAS  Google Scholar 

  • Delom F, Emadali A, Cocolakis E, Lebrun JJ, Nantel A, Chevet E . (2007a). Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells. Cell Death Differ 14: 586–596.

    Article  CAS  Google Scholar 

  • Delom F, Fessart D, Chevet E . (2007b). Regulation of calnexin sub-cellular localization modulates endoplasmic reticulum stress-induced apoptosis in MCF-7 cells. Apoptosis 12: 293–305.

    Article  CAS  Google Scholar 

  • Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM et al. (2002). Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21: 8843–8851.

    Article  CAS  Google Scholar 

  • Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X et al. (2007). Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282: 4702–4710.

    Article  CAS  Google Scholar 

  • Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A . (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16: 966–975.

    Article  CAS  Google Scholar 

  • Elbein AD . (1987). Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 56: 497–534.

    Article  CAS  Google Scholar 

  • Essmann F, Engels IH, Totzke G, Schulze-Osthoff K, Janicke RU . (2004). Apoptosis resistance of mcf-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res 64: 7065–7072.

    Article  CAS  Google Scholar 

  • Gelebart P, Opas M, Michalak M . (2005). Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37: 260–266.

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Ron D . (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  Google Scholar 

  • Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M . (2004). Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357: 127–130.

    Article  CAS  Google Scholar 

  • Janicke RU, Sprengart ML, Wati MR, Porter AG . (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273: 9357–9360.

    Article  CAS  Google Scholar 

  • Kaufman RJ . (1999). Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13: 1211–1233.

    Article  CAS  Google Scholar 

  • Kim I, Shu CW, Xu W, Shiau CW, Grant D, Vasile S et al. (2009). Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J Biol Chem 284: 1593–1603.

    Article  CAS  Google Scholar 

  • Kim I, Xu W, Reed JC . (2008a). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7: 1013–1030.

    Article  CAS  Google Scholar 

  • Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha YI, Lu B . (2008b). Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 4: 659–668.

    Article  CAS  Google Scholar 

  • Kim KW, Moretti L, Lu B . (2008c). M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS ONE 3: e2275.

    Article  Google Scholar 

  • Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE et al. (2006). Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 281: 36883–36890.

    Article  CAS  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H et al. (2007). ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14: 230–239.

    Article  CAS  Google Scholar 

  • Lai E, Teodoro T, Volchuk A . (2007). Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22: 193–201.

    CAS  Google Scholar 

  • Lee AS . (2005). The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35: 373–381.

    Article  CAS  Google Scholar 

  • Lee AS . (2007). GRP78 Induction in cancer: therapeutic and prognostic implications. Cancer Res 67: 3496–3499.

    Article  CAS  Google Scholar 

  • Ma Y, Brewer JW, Diehl JA, Hendershot LM . (2002). Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318: 1351–1365.

    Article  CAS  Google Scholar 

  • Marissen WE, Guo Y, Thomas AA, Matts RL, Lloyd RE . (2000). Identification of caspase 3-mediated cleavage and functional alteration of eukaryotic initiation factor 2alpha in apoptosis. J Biol Chem 275: 9314–9323.

    Article  CAS  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T . (2002). Autophagosome formation in mammalian cells. Cell Struct Funct 27: 421–429.

    Article  Google Scholar 

  • Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K et al. (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152: 657–668.

    Article  CAS  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26: 9220–9231.

    Article  CAS  Google Scholar 

  • Ostenfeld MS, Fehrenbacher N, Hoyer-Hansen M, Thomsen C, Farkas T, Jaattela M . (2005). Effective tumor cell death by {sigma}-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res 65: 8975–8983.

    Article  CAS  Google Scholar 

  • Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E et al. (2001). A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61: 439–444.

    CAS  Google Scholar 

  • Palmerini F, Devilard E, Jarry A, Birg F, Xerri L . (2001). Caspase 7 downregulation as an immunohistochemical marker of colonic carcinoma. Hum Pathol 32: 461–467.

    Article  CAS  Google Scholar 

  • Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee A-H, Yoshida H et al. (2004). XBP1 Is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64: 5943–5947.

    Article  CAS  Google Scholar 

  • Satoh S, Hijikata M, Handa H, Shimotohno K . (1999). Caspase-mediated cleavage of eukaryotic translation initiation factor subunit 2alpha. Biochem J 342 (Part 1): 65–70.

    Article  CAS  Google Scholar 

  • Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P et al. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7: 1165–1176.

    Article  CAS  Google Scholar 

  • Talloczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ et al. (2002). Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99: 190–195.

    Article  CAS  Google Scholar 

  • Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX . (2008). Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ 15: 422–425.

    Article  CAS  Google Scholar 

  • Yorimitsu T, Nair U, Yang Z, Klionsky DJ . (2006). Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281: 30299–30304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NCI 1R01 CA125842–01A1 and DOD BC030542.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Moretti, L., Mitchell, L. et al. Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2α in caspase-3/7-deficient cells. Oncogene 29, 3241–3251 (2010). https://doi.org/10.1038/onc.2010.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.74

Keywords

This article is cited by

Search

Quick links