Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Artemin is estrogen regulated and mediates antiestrogen resistance in mammary carcinoma

A Corrigendum to this article was published on 19 January 2012

Abstract

We have previously identified an oncogenic role of artemin (ARTN), a member of glial cell derived neurotrophic factor family of ligands, in mammary carcinoma. We herein report that ARTN is an estrogen-inducible gene. Meta-analysis of gene expression data sets showed that ARTN expression is positively correlated to estrogen receptor (ER) status in human mammary carcinoma. Furthermore, in patients with ER-positive mammary carcinoma treated with tamoxifen, high ARTN expression is significantly correlated with decreased survival. Forced expression of ARTN in ER-positive human mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. ARTN-stimulated resistance to tamoxifen and fulvestrant is mediated by increased BCL-2 expression. Conversely, depletion of endogenous ARTN by small-interfering RNA or functional antagonism of ARTN by antibody enhanced the efficacy of antiestrogens. Tamoxifen decreased ARTN expression in tamoxifen-sensitive mammary carcinoma cells whereas ARTN expression was increased in tamoxifen-resistant cells and not affected by tamoxifen treatment. Antibody inhibition of ARTN in tamoxifen-resistant cells improved tamoxifen sensitivity. Functional antagonism of ARTN therefore warrants consideration as an adjuvant therapy to enhance antiestrogen efficacy in ER-positive mammary carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

Abbreviations

ARTN:

artemin

BrdU:

bromodeoxyuridine

CS-FBS:

charcoal stripped-fetal bovine serum

DMFS:

distant metastasis-free survival

ER:

estrogen receptor

ERE:

estrogen response element

GDNF:

glial cell derived neurotrophic factor

GFL:

GDNF family of ligand

GFRα:

GDNF family receptor-α

OAS:

overall survival

PR:

progesterone receptor

qPCR:

quantitative PCR

siRNA:

small-interfering RNA

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

References

  • Abe O, Abe R, Enomoto K, Kikuchi K, Koyama H, Nomura Y et al. (1998). Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351: 1451–1467.

    Article  Google Scholar 

  • Airaksinen MS, Saarma M . (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383–394.

    Article  CAS  Google Scholar 

  • Arpino G, Wiechmann L, Osborne CK, Schiff R . (2008). Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29: 217–233.

    Article  CAS  Google Scholar 

  • Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS et al. (1998). Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRa3-RET receptor complex. Neuron 21: 1291–1302.

    Article  CAS  Google Scholar 

  • Bardin A, Boulle N, Lazennec G, Vignon F, Pujol P . (2004). Loss of ER beta expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer 11: 537–551.

    Article  CAS  Google Scholar 

  • Boulay A, Breuleux M, Stephan C, Fux C, Brisken C, Fiche M et al. (2008). The ret receptor tyrosine kinase pathway functionally interacts with the ERalpha pathway in breast cancer. Cancer Res 68: 3743–3751.

    Article  CAS  Google Scholar 

  • Bursch W, Ellinger A, Kienzl H, Tarak L, Pandey S, Sikorska M et al. (1996). Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17: 1595–1607.

    Article  CAS  Google Scholar 

  • Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H . (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276: 9817–9824.

    Article  CAS  Google Scholar 

  • Carmillo P, Dagø L, Day ES, Worley DS, Rossomando A, Walus L et al. (2005). Glial cell line-derived neurotrophic factor (GDNF) receptor a-1 (GFRa1) is highly selective for GDNF versus artemin. J Biol Chem 44: 2545–2554.

    CAS  Google Scholar 

  • Chung YL, Sheu ML, Yang SC, Lin CH, Yen SH . (2002). Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer 97: 306–312.

    Article  CAS  Google Scholar 

  • Diel P, Smolnikar K, Michna H . (1999). The pure antiestrogen ICI 182780 is more effective in the induction of apoptosis and down regulation of BCL-2 than tamoxifen in MCF-7 cells. Breast Cancer Res Treat 58: 87–97.

    Article  CAS  Google Scholar 

  • Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL . (2003). Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10: 179–186.

    Article  CAS  Google Scholar 

  • Dowsett M, Nicholson RI, Pietras RJ . (2005). Biological characteristics of the pure antiestrogen fulvestrant: overcoming endocrine resistance. Breast Cancer Res Treat 93: S11–S18.

    Article  CAS  Google Scholar 

  • Elledge RM, Green S, Howes L, Clark GM, Berardo M, Allred DC et al. (1997). bcl-2, p53, and response to tamoxifen in estrogen receptor-positive metastatic breast cancer: A Southwest Oncology Group Study. J Clin Oncol 15: 1916–1922.

    Article  CAS  Google Scholar 

  • Fagan DH, Yee D . (2008). Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 13: 423–429.

    Article  Google Scholar 

  • Hall JM, McDonnel DP . (1999). The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140: 5566–5578.

    Article  CAS  Google Scholar 

  • Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87: 905–931.

    Article  CAS  Google Scholar 

  • Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ . (2008). Estrogen receptor beta increases the efficacy of antiestrogens by effects on apoptosis and cell cycling in breast cancer cells. Breast Cancer Res Treat 109: 241–250.

    Article  CAS  Google Scholar 

  • Johnston SRD . (2005). Selective oestrogen receptor modulators and downregulators for breast cancer—have they lost their way? Breast Cancer Res 7: 119–130.

    Article  CAS  Google Scholar 

  • Kampa M, Pelekanou V, Castanas E . (2008). Membrane-initiated steroid action in breast and prostate cancer. Steroids 73: 953–960.

    Article  CAS  Google Scholar 

  • Kang J, Perry JK, Pandey V, Fielder GC, Mei B, Qian PX et al. (2009). Artemin is oncogenic for human mammary carcinoma cells. Oncogene 28: 2034–2045.

    Article  CAS  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494.

    Article  CAS  Google Scholar 

  • Ke N, Albers A, Claassen G, Yu DH, Chatterton JE, Hu X et al. (2004). One-week 96-well soft agar growth assay for cancer target validation. Biotechniques 36: 826–833.

    Article  CAS  Google Scholar 

  • Kim R, Tanabe K, Emi M, Uchida Y, Toge T . (2005). Modulation of tamoxifen sensitivity by antisense Bcl-2 and trastuzumab in breast carcinoma cells. Cancer 103: 2199–2207.

    Article  CAS  Google Scholar 

  • Knowlden JM, Hutcheson IR, Barrow D, Gee JMW, Nicholson RI . (2005). Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology 146: 4609–4618.

    Article  CAS  Google Scholar 

  • Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JMW, Harper ME et al. (2003). Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144: 1032–1044.

    Article  CAS  Google Scholar 

  • Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB . (1996). Overexpression of HER2 modulates bcl-2, Bcl-X(L) and tamoxifen induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res 2: 1215–1219.

    CAS  Google Scholar 

  • Lee GY, Kenny PA, Lee EH, Bissell MJ . (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4: 359–365.

    Article  CAS  Google Scholar 

  • Levin ER, Pietras RJ . (2008). Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat 108: 351–361.

    Article  CAS  Google Scholar 

  • Liu DX, Lobie PE . (2007). Transcriptional activation of p53 by Pitx1. Cell Death Differ 14: 1893–1907.

    Article  CAS  Google Scholar 

  • Mandlekar S, Kong ANT . (2001). Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6: 469–477.

    Article  CAS  Google Scholar 

  • Marino M, Galluzzo P, Ascenzi P . (2006). Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7: 497–508.

    Article  CAS  Google Scholar 

  • Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S et al. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68: 826–833.

    Article  CAS  Google Scholar 

  • Massarweh S, Schiff R . (2006). Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr Relat Cancer 13: S15–S24.

    Article  CAS  Google Scholar 

  • McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM et al. (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology 142: 2776–2788.

    Article  CAS  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102: 13550–13555.

    Article  CAS  Google Scholar 

  • Murphy LC, Watson PH . (2006). Is oestrogen receptor-beta a predictor of endocrine therapy responsiveness in human breast cancer? Endocr Relat Cancer 13: 327–334.

    Article  CAS  Google Scholar 

  • Musgrove EA, Sutherland RL . (2009). Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9: 631–643.

    Article  CAS  Google Scholar 

  • Nicholson RI, Hutcheson IR, Hiscox SE, Knowlden JM, Giles M, Barrow D et al. (2005). Growth factor signalling and resistance to selective oestrogen receptor modulators and pure anti-oestrogens: the use of anti-growth factor therapies to treat or delay endocrine resistance in breast cancer. Endocr Relat Cancer 12: S29–S36.

    Article  CAS  Google Scholar 

  • Nicholson RI, Hutcheson IR, Jones HE, Hiscox SE, Giles M, Taylor KM et al. (2007). Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev Endocr Metabol Disord 8: 241–253.

    Article  CAS  Google Scholar 

  • O'Neill PA, Davies MPA, Shaaban AM, Innes H, Torevell A, Sibson DR et al. (2004). Wild-type oestrogen receptor beta mRNA and protein expression in tamoxifen-treated post-menopausal breast cancers. Br J Cancer 91: 1694–1702.

    Article  CAS  Google Scholar 

  • Osborne CK . (1998). Tamoxifen in the treatment of breast cancer. N Engl J Med 339: 1609–1618.

    Article  CAS  Google Scholar 

  • Pandey V, Perry JK, Mohankumar KM, Kong XJ, Liu SM, Wu ZS et al. (2008). Autocrine human growth hormone stimulates oncogenicity of endometrial carcinoma cells. Endocrinology 149: 3909–3919.

    Article  CAS  Google Scholar 

  • Pandey V, Qian PX, Kang J, Perry JK, Mitchell MD, Yin ZN et al. (2010). Artemin stimulates oncogenicity and invasiveness of endometrial carcinoma cells. Endocrinology 151: 909–920.

    Article  CAS  Google Scholar 

  • Park BW, Kim KS, Heo MK, Ko SS, Hong SW, Yang WI et al. (2003). Expression of estrogen receptor-beta in normal mammary and tumor tissues: is it protective in breast carcinogenesis? Breast Cancer Res Treat 80: 79–85.

    Article  CAS  Google Scholar 

  • Perillo B, Sasso A, Abbondanza C, Palumbo G . (2000). 17B-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol 20: 2890–2901.

    Article  CAS  Google Scholar 

  • Pettersson K, Delaunay F, Gustafsson JA . (2000). Estrogen receptor beta acts as a dominant regulator of estrogen signaling. Oncogene 19: 4970–4978.

    Article  CAS  Google Scholar 

  • Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH . (2007). Pathways to tamoxifen resistance. Cancer Lett 256: 1–24.

    Article  CAS  Google Scholar 

  • Riggins RB, Zwart A, Nehra R, Clarke R . (2005). The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther 4: 33–41.

    Article  CAS  Google Scholar 

  • Rody A, Holtrich U, Solbach C, Kourtis K, Von Minckwitz G, Engels K et al. (2005). Methylation of estrogen receptor beta promoter correlates with loss of ER-beta expression in mammary carcinoma and is an early indication marker in premalignant lesions. Endocr Relat Cancer 12: 903–916.

    Article  CAS  Google Scholar 

  • Rotolo S, Ceccarelli S, Romano F, Frati L, Marchese C, Angeloni A . (2008). Silencing of keratinocyte growth factor receptor restores 5-fluorouracil and tamoxifen efficacy on responsive cancer cells. PLoS ONE 3: e2528.

    Article  Google Scholar 

  • Sarkaria JN, Gibson DFC, Jordan VC, Fowler JF, Lindstrom MJ, Mulcahy RT . (1993). Tamoxifen-induced increase in the potential doubling time of MCF-7 xenografts as determined by bromodeoxyuridine labeling and flow cytometry. Cancer Res 53: 4413–4417.

    CAS  Google Scholar 

  • Shaaban AM, O'Neill PA, Davies MPA, Sibson R, West CR, Smith PH et al. (2003). Declining estrogen receptor-beta expression defines malignant progression of human breast neoplasia. Am J Surg Pathol 27: 1502–1512.

    Article  Google Scholar 

  • Shaw LE, Sadler AJ, Pugazhendhi D, Darbre PD . (2006). Changes in oestrogen receptor-alpha and -beta during progression to acquired resistance to tamoxifen and fulvestrant (Faslodex, ICI 182,780) in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 99: 19–32.

    Article  CAS  Google Scholar 

  • Siddiqa A, Long LM, Li L, Marciniak RA, Kazhdan I . (2008). Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (PI3K) signalling pathways. BMC Cancer 8: 129.

    Article  Google Scholar 

  • Speirs V, Malone C, Walton DS, Kerin MJ, Atkin SL . (1999). Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. Cancer Res 59: 5421–5424.

    CAS  Google Scholar 

  • Tangkeangsirisin W, Hayashi J, Serrero G . (2004). PC cell-derived growth factor mediates tamoxifen resistance and promotes tumor growth of human breast cancer cells. Cancer Res 64: 1737–1743.

    Article  CAS  Google Scholar 

  • Teixeira C, Reed JC, Pratt MAC . (1995). Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res 55: 3902–3907.

    CAS  Google Scholar 

  • Williams C, Edvardsson K, Lewandowski SA, Stram A, Gustafsson JA . (2008). A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27: 1019–1032.

    Article  CAS  Google Scholar 

  • Yager JD, Davidson NE . (2006). Estrogen carcinogenesis in breast cancer. N Engl J Med 354: 270–282.

    Article  CAS  Google Scholar 

  • Zhang GJ, Kimijima I, Onda M, Kanno M, Sato H, Watanabe T et al. (1999). Tamoxifen-induced apoptosis in breast cancer cells relates to down-regulation of bcl-2, but not bax and bcl-X(L), without alteration of p53 protein levels. Clin Cancer Res 5: 2971–2977.

    CAS  Google Scholar 

  • Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO, Lobie PE . (2003). Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 278: 7580–7590.

    Article  CAS  Google Scholar 

  • Zhu T, Emerald BS, Zhang X, Lee KO, Gluckman PD, Mertani HC et al. (2005). Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res 65: 317–324.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Carol Chelimo (MPH) for the meta-analysis of breast cancer microarray data. This work was funded by the Breast Cancer Research Trust (NZ); the Foundation for Research, Science and Technology of New Zealand; the Hundred-Talent Scheme of Chinese Academy of Sciences, National Natural Science Foundation of China (30571030) and National Basic Research Program of China (2007CB914503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P E Lobie.

Ethics declarations

Competing interests

JK, VP, JKP, DXL and PEL have equity interests in Saratan Therapeutics Ltd. DXL and PEL are inventors on PCT application PCT/NZ2008/000152 and US provisional applications 61/234902. PEL is an inventor on US provisional application 61/252513. TZ and PEL are consultants for Saratan Therapeutics Ltd.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Qian, P., Pandey, V. et al. Artemin is estrogen regulated and mediates antiestrogen resistance in mammary carcinoma. Oncogene 29, 3228–3240 (2010). https://doi.org/10.1038/onc.2010.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.71

Keywords

This article is cited by

Search

Quick links