Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR

Abstract

As an established mediator of inflammation, interleukin-6 (IL-6) is implicated to facilitate prostate cancer progression to androgen independence through transactivation of the androgen receptor. However, whether IL-6 has a causative role in de novo prostate tumorigenesis was never investigated. We now provide the first evidence that IL-6 can induce tumorigenic conversion and further progression to an invasive phenotype of non-tumorigenic benign prostate epithelial cells. Moreover, we find that paracrine IL-6 stimulates the autocrine IL-6 loop and autocrine activation of insulin-like type I growth factor receptor (IGF-IR) to confer the tumorigenic property and also that activation of signal transducer and activator of transcription 3 (STAT3) is critical in these processes. Inhibition of STAT3 activation or IGF-IR signaling suppresses IL-6-mediated malignant conversion and the associated invasive phenotype. Inhibition of STAT3 activation suppresses IL-6-induced upregulation of IGF-IR and its ligands, namely IGF-I and IGF-II. These findings indicate that IL-6 signaling cooperates with IGF-IR signaling in the prostate microenvironment to promote prostate tumorigenesis and progression to aggressiveness. Our findings suggest that STAT3 and IGF-IR may represent potential effective targets for prevention or treatment of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Al-Shanti N, Saini A, Faulkner SH, Stewart CE . (2008). Beneficial synergistic interactions of TNF-alpha and IL-6 in C2 skeletal myoblasts–potential cross-talk with IGF system. Growth Factors 26: 61–73.

    Article  CAS  Google Scholar 

  • Ara T, Declerck YA . (2010). Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46: 1223–1231.

    Article  CAS  Google Scholar 

  • Bae VL, Jackson-Cook CK, Brothman AR, Maygarden SJ, Ware JL . (1994). Tumorigenicity of SV40T antigen immortalized human prostate epithelial cells: association with decreased epidermal growth factor receptor (EGFR) expression. Int J Cancer 58: 721–729.

    Article  CAS  Google Scholar 

  • Bardia A, Platz EA, Yegnasubramanian S, De Marzo AM, Nelson WG . (2009). Anti-inflammatory drugs, antioxidants, and prostate cancer prevention. Curr Opin Pharmacol 9: 419–426.

    Article  CAS  Google Scholar 

  • Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A et al. (2004). TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21: 491–501.

    Article  CAS  Google Scholar 

  • Berger T, Cheung CC, Elia AJ, Mak TW . (2010). Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci USA 107: 2995–3000.

    Article  CAS  Google Scholar 

  • Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS et al. (2003). A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63: 8912–8921.

    CAS  Google Scholar 

  • Coe KJ, Jia Y, Ho HK, Rademacher P, Bammler TK, Beyer RP et al. (2007). Comparison of the cytotoxicity of the nitroaromatic drug flutamide to its cyano analogue in the hepatocyte cell line TAMH: evidence for complex I inhibition and mitochondrial dysfunction using toxicogenomic screening. Chem Res Toxicol 20: 1277–1290.

    Article  CAS  Google Scholar 

  • Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J et al. (2009). Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 100: 134–144.

    Article  CAS  Google Scholar 

  • Corcoran NM, Costello AJ . (2003). Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int 91: 545–553.

    Article  CAS  Google Scholar 

  • Damon SE, Plymate SR, Carroll JM, Sprenger CC, Dechsukhum C, Ware JL et al. (2001). Transcriptional regulation of insulin-like growth factor-I receptor gene expression in prostate cancer cells. Endocrinology 142: 21–27.

    Article  CAS  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al. (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 256–269.

    Article  CAS  Google Scholar 

  • Dorff TB, Goldman B, Pinski JK, Mack PC, Lara Jr PN, Van Veldhuizen Jr PJ et al. (2010). Clinical correlative results of SWOG S0354 a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 16: 3028–3034.

    Article  CAS  Google Scholar 

  • Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF et al. (2009). Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 182: 1621–1627.

    Article  CAS  Google Scholar 

  • Freedland SJ, Platz EA . (2007). Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol Rev 29: 88–97.

    Article  Google Scholar 

  • Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15: 103–113.

    Article  CAS  Google Scholar 

  • Grivennikov S, Karin M . (2008). Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13: 7–9.

    Article  CAS  Google Scholar 

  • Haverkamp J, Charbonneau B, Ratliff TL . (2008). Prostate inflammation and its potential impact on prostate cancer: a current review. J Cell Biochem 103: 1344–1353.

    Article  CAS  Google Scholar 

  • Irigaray P, Newby JA, Lacomme S, Belpomme D . (2007). Overweight/obesity and cancer genesis: more than a biological link. Biomed Pharmacother 61: 665–678.

    Article  CAS  Google Scholar 

  • Ishiguro H, Akimoto K, Nagashima Y, Kojima Y, Sasaki T, Ishiguro-Imagawa Y et al. (2009). aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci USA 106: 16369–16374.

    Article  CAS  Google Scholar 

  • Kang Y, Massague J . (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118: 277–279.

    Article  CAS  Google Scholar 

  • Karnoub AE, Weinberg RA . (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9: 517–531.

    Article  CAS  Google Scholar 

  • Kojima S, Inahara M, Suzuki H, Ichikawa T, Furuya Y . (2009). Implications of insulin-like growth factor-I for prostate cancer therapies. Int J Urol 16: 161–167.

    Article  CAS  Google Scholar 

  • Long RM, Morrissey C, Fitzpatrick JM, Watson RW . (2005). Prostate epithelial cell differentiation and its relevance to the understanding of prostate cancer therapies. Clin Sci (Lond) 108: 1–11.

    Article  CAS  Google Scholar 

  • Nakashima J, Tachibana M, Horiguchi Y, Oya M, Ohigashi T, Asakura H et al. (2000). Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res 6: 2702–2706.

    CAS  PubMed  Google Scholar 

  • O'Malley RL, Taneja SS . (2006). Obesity and prostate cancer. Can J Urol 13 (Suppl 2): 11–7.

    PubMed  Google Scholar 

  • Paule B, Terry S, Kheuang L, Soyeux P, Vacherot F, de la Taille A . (2007). The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol 25: 477–489.

    Article  CAS  Google Scholar 

  • Rosen DG, Yang G, Bast Jr RC, Liu J . (2006). Use of Ras-transformed human ovarian surface epithelial cells as a model for studying ovarian cancer. Methods Enzymol 407: 660–676.

    Article  CAS  Google Scholar 

  • Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL . (2007). IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13: 5549s–5555s.

    Article  CAS  Google Scholar 

  • Santer FR, Malinowska K, Culig Z, Cavarretta IT . (2010). Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 17: 241–253.

    Article  CAS  Google Scholar 

  • Soon L, Flechner L, Gutkind JS, Wang LH, Baserga R, Pierce JH et al. (1999). Insulin-like growth factor I synergizes with interleukin 4 for hematopoietic cell proliferation independent of insulin receptor substrate expression. Mol Cell Biol 19: 3816–3828.

    Article  CAS  Google Scholar 

  • Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CS, Ware J et al. (2005). Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci USA 102: 1059–1064.

    Article  CAS  Google Scholar 

  • Su ZZ, Shi Y, Fisher PB . (1997). Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc Natl Acad Sci USA 94: 9125–9130.

    Article  CAS  Google Scholar 

  • Su Z, Shi Y, Fisher PB . (2000). Cooperation between AP1 and PEA3 sites within the progression elevated gene-3 (PEG-3) promoter regulate basal and differential expression of PEG-3 during progression of the oncogenic phenotype in transformed rat embryo cells. Oncogene 19: 3411–3421.

    Article  CAS  Google Scholar 

  • Su Z, Shi Y, Friedman R, Qiao L, McKinstry R, Hinman D et al. (2001). PEA3 sites within the progression elevated gene-3 (PEG-3) promoter and mitogen-activated protein kinase contribute to differential PEG-3 expression in Ha-ras and v-raf oncogene transformed rat embryo cells. Nucleic Acids Res 29: 1661–1671.

    Article  CAS  Google Scholar 

  • Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N et al. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28: 2940–2947.

    Article  CAS  Google Scholar 

  • Sutcliffe S, Platz EA . (2007). Inflammation in the etiology of prostate cancer: an epidemiologic perspective. Urol Oncol 25: 242–249.

    Article  CAS  Google Scholar 

  • Tam L, McGlynn LM, Traynor P, Mukherjee R, Bartlett JM, Edwards J . (2007). Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer 97: 378–383.

    Article  CAS  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  Google Scholar 

  • Traynor P, McGlynn LM, Mukhergee R, Grimsley SJ, Bartlett JM, Edwards J . (2008). An increase in N-Ras expression is associated with development of hormone refractory prostate cancer in a subset of patients. Dis Markers 24: 157–165.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Werner H, Bruchim I . (2009). The insulin-like growth factor-I receptor as an oncogene. Arch Physiol Biochem 115: 58–71.

    Article  CAS  Google Scholar 

  • Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL et al. (2009). Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA 106: 3913–3918.

    Article  CAS  Google Scholar 

  • Zeisberg M, Neilson EG . (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119: 1429–1437.

    Article  CAS  Google Scholar 

  • Zhang X, Fournier MV, Ware JL, Bissell MJ, Yacoub A, Zehner ZE . (2009). Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 8: 499–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Health (NIH) Temin Award 1K01CA116002, NIH 1R01CA149405 and DOD-USARMC IDEA Development Award W81XWH-06-1-0014 to JDW and partially supported by the Pacific Northwest Prostate Cancer SPORE P50-CA097186 (JDW) and the NIH Program Project Grant PO1 CA085859 (SRP) and P01 CA104177 (PBF). PBF holds the Thelma Newmeyer Corman Chair in Cancer Research at the VCU Massey Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, A., Liu, G., Coleman, I. et al. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene 30, 2345–2355 (2011). https://doi.org/10.1038/onc.2010.605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.605

Keywords

This article is cited by

Search

Quick links