Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation

Abstract

The transcriptional activity of the androgen receptor (AR) is regulated by both ligand binding and post-translational modifications, including acetylation and small ubiquitin-like modifier (SUMO)ylation. Histone deacetylases (HDACs) are known to catalyze the removal of acetyl groups from both histones and non-histone proteins. In this study, we report that HDAC4 binds to and inhibits the activity of the AR. This inhibition was found to depend on the SUMOylation, instead of deacetylation, of the AR. Consistently, HDAC4 increases the level of AR SUMOylation in both whole-cell and cell-free assay systems, raising the possibility that the deacetylase may act as an E3 ligase for AR SUMOylation. Knock down of HDAC4 increases the activity of endogenous AR and androgen induction of prostate-specific antigen expression and prostate cancer cell growth, which is associated with decreased SUMOylation of the receptor. Overall, the studies identify HDAC4 as a positive regulator for AR SUMOylation, revealing a deacetylase-independent mechanism of HDAC action in prostate cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bai W, Weigel NL . (1996). Phosphorylation of Ser211 in the chicken progesterone receptor modulates its transcriptional activity. J Biol Chem 271: 12801–12806.

    Article  CAS  Google Scholar 

  • Blok LJ, de Ruiter PE, Brinkmann AO . (1996). Androgen receptor phosphorylation. Endocr Res 22: 197–219.

    Article  CAS  Google Scholar 

  • Brinkmann AO, Blok LJ, de Ruiter PE, Doesburg P, Steketee K, Berrevoets CA et al. (1999). Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 69: 307–313.

    Article  CAS  Google Scholar 

  • Chang CS, Kokontis J, Liao ST . (1988). Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc Natl Acad Sci USA 85: 7211–7215.

    Article  CAS  Google Scholar 

  • Cheng J, Wang D, Wang Z, Yeh ET . (2004). SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol Cell Biol 24: 6021–6028.

    Article  CAS  Google Scholar 

  • Dai Y, Ngo D, Forman LW, Qin DC, Jacob J, Faller DV . (2007). Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol Endocrinol 21: 1807–1821.

    Article  CAS  Google Scholar 

  • Dotzlaw H, Moehren U, Mink S, Cato AC, Iniguez Lluhi JA, Baniahmad A . (2002). The amino terminus of the human AR is target for corepressor action and antihormone agonism. Mol Endocrinol 16: 661–673.

    Article  CAS  Google Scholar 

  • Evans RM . (1988). The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  CAS  Google Scholar 

  • Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X et al. (2006). Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26: 8122–8135.

    Article  CAS  Google Scholar 

  • Fu M, Wang C, Reutens AT, Wang J, Angeletti RH, Siconolfi-Baez L et al. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 275: 20853–20860.

    Article  CAS  Google Scholar 

  • Fu M, Wang C, Zhang X, Pestell RG . (2004). Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 68: 1199–1208.

    Article  CAS  Google Scholar 

  • Gaughan L, Logan IR, Cook S, Neal DE, Robson CN . (2002). Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277: 25904–25913.

    Article  CAS  Google Scholar 

  • Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM et al. (2007). Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25: 57–70.

    Article  CAS  Google Scholar 

  • Gregoire S, Yang XJ . (2005). Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25: 2273–2287.

    Article  CAS  Google Scholar 

  • Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10: 309–319.

    Article  CAS  Google Scholar 

  • Jeong BC, Hong CY, Chattopadhyay S, Park JH, Gong EY, Kim HJ et al. (2004). Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol Endocrinol 18: 13–25.

    Article  CAS  Google Scholar 

  • Jones PL, Shi YB . (2003). N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors. Curr Top Microbiol Immunol 274: 237–268.

    CAS  PubMed  Google Scholar 

  • Kaikkonen S, Jaaskelainen T, Karvonen U, Rytinki MM, Makkonen H, Gioeli D et al. (2009). SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates gene responses in prostate cancer cells. Mol Endocrinol 23: 292–307.

    Article  CAS  Google Scholar 

  • Karvonen U, Janne OA, Palvimo JJ . (2006). Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 312: 3165–3183.

    Article  CAS  Google Scholar 

  • Kasper S, Rennie PS, Bruchovsky N, Lin L, Cheng H, Snoek R et al. (1999). Selective activation of the probasin androgen-responsive region by steroid hormones. J Mol Endocrinol 22: 313–325.

    Article  CAS  Google Scholar 

  • Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E et al. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21: 2682–2691.

    Article  CAS  Google Scholar 

  • Kotaja N, Karvonen U, Janne OA, Palvimo JJ . (2002). The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277: 30283–30288.

    Article  CAS  Google Scholar 

  • Lee H, Jiang F, Wang Q, Nicosia SV, Yang J, Su B et al. (2000). MEKK1 activation of human estrogen receptor alpha and stimulation of the agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells. Mol Endocrinol 14: 1882–1896.

    CAS  PubMed  Google Scholar 

  • Li P, Lee H, Guo S, Unterman TG, Jenster G, Bai W . (2003). AKT-independent protection of prostate cancer cells from apoptosis mediated through complex formation between the androgen receptor and FKHR. Mol Cell Biol 23: 104–118.

    Article  Google Scholar 

  • Li P, Nicosia SV, Bai W . (2001). Antagonism between PTEN/MMAC1/TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J Biol Chem 276: 20444–20450.

    Article  CAS  Google Scholar 

  • Lin DY, Fang HI, Ma AH, Huang YS, Pu YS, Jenster G et al. (2004). Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol 24: 10529–10541.

    Article  CAS  Google Scholar 

  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM . (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240: 327–330.

    Article  CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T . (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18: 5099–5107.

    Article  CAS  Google Scholar 

  • Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ et al. (1999). The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19: 1182–1189.

    Article  CAS  Google Scholar 

  • Nishida T, Yasuda H . (2002). PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 277: 41311–41317.

    Article  CAS  Google Scholar 

  • Onate SA, Tsai SY, Tsai MJ, O'Malley BW . (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.

    Article  CAS  Google Scholar 

  • Pan Y, Chen J . (2005). Modification of MDMX by sumoylation. Biochem Biophys Res Commun 332: 702–709.

    Article  CAS  Google Scholar 

  • Poukka H, Karvonen U, Janne OA, Palvimo JJ . (2000). Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97: 14145–14150.

    Article  CAS  Google Scholar 

  • Snoek R, Bruchovsky N, Kasper S, Matusik RJ, Gleave M, Sato N et al. (1998). Differential transactivation by the androgen receptor in prostate cancer cells. Prostate 36: 256–263.

    Article  CAS  Google Scholar 

  • Thomas M, Dadgar N, Aphale A, Harrell JM, Kunkel R, Pratt WB et al. (2004). Androgen receptor acetylation site mutations cause trafficking defects, misfolding, and aggregation similar to expanded glutamine tracts. J Biol Chem 279: 8389–8395.

    Article  CAS  Google Scholar 

  • Tsai MJ, O'Malley BW . (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63: 451–486.

    Article  CAS  Google Scholar 

  • Xu J, O'Malley BW . (2002). Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord 3: 185–192.

    Article  CAS  Google Scholar 

  • Zhang X, Wharton W, Yuan Z, Tsai SC, Olashaw N, Seto E . (2004). Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol 24: 5106–5118.

    Article  CAS  Google Scholar 

  • Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP . (2005). Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25: 8456–8464.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs XJ Yang for HDAC4 vector, RJ Matusik for probasin-based AR reporter genes, PR Rennie for the PSA-based reporter gene, G Jenster for GST-AR-NT construct, JJ Palvimo for AR SUMOylation mutants and AP Lieberman for AR acetylation mutants. The work was supported by the Public Health Service Grants CA93666 and CA111334 (WB), a DOD Prostate Cancer Grant DAMD17-02-1-0140 (WB) and Grants 09KT-03 and 06BCBG1 (W.B) from the Florida Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Bai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Tse, AW., Li, P. et al. Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation. Oncogene 30, 2207–2218 (2011). https://doi.org/10.1038/onc.2010.600

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.600

Keywords

This article is cited by

Search

Quick links