Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Cdc25B is negatively regulated by p53 through Sp1 and NF-Y transcription factors

Abstract

Cdc25B phosphatases function as key players in G2/M cell cycle progression by activating the CDK1–cyclinB1 complexes. They also have an essential role in recovery from the G2/M checkpoint activated in response to DNA damage. Overexpression of Cdc25B results in bypass of the G2/M checkpoint and illegitimate entry into mitosis, and also causes replicative stress, leading to genomic instability. Thus, fine-tuning of Cdc25B expression level is critical for correct cell cycle progression and G2 checkpoint recovery. However, the transcriptional regulation of Cdc25B remains largely unknown. Earlier studies have shown that the tumor suppressor p53 overexpression transcriptionally represses Cdc25B; however, the molecular mechanism of this repression has not yet been elucidated, although it was suggested to occur through the induction of p21. Here we show that Cdc25B is downregulated by the basal level of p53 in multiple cell types. This downregulation also occurs in p21−/− cell lines, indicating that p21 is not required for p53-mediated regulation of Cdc25B. Deletion and mutation analyses of the Cdc25B promoter revealed that downregulation by p53 is dependent on the presence of functional Sp1/Sp3 and NF-Y binding sites. Furthermore, chromatin immunoprecipitation analyses show that p53 binds to the Cdc25B promoter and mediates transcriptional attenuation through the Sp1 and NF-Y transcription factors. Our results suggest that the inability to downregulate Cdc25B after loss of p53 might contribute to tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baldin V, Cans C, Knibiehler M, Ducommun B . (1997a). Phosphorylation of human CDC25B phosphatase by CDK1-cyclin A triggers its proteasome-dependent degradation. J Biol Chem 272: 32731–32734.

    Article  CAS  Google Scholar 

  • Baldin V, Cans C, Superti-Furga G, Ducommun B . (1997b). Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control? Oncogene 14: 2485–2495.

    Article  CAS  Google Scholar 

  • Benatti P, Basile V, Merico D, Fantoni LI, Tagliafico E, Imbriano C . (2008). A balance between NF-Y and p53 governs the pro- and anti-apoptotic transcriptional response. Nucleic Acids Res 36: 1415–1428.

    Article  CAS  Google Scholar 

  • Bocangel D, Sengupta S, Mitra S, Bhakat KK . (2009). p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 29: 3741–3750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boutros R, Dozier C, Ducommun B . (2006). The when and wheres of Cdc25 phosphatases. Curr Opin Cell Biol 18: 185–191.

    Article  CAS  Google Scholar 

  • Boutros R, Lobjois V, Ducommun B . (2007). CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7: 495–507.

    Article  CAS  Google Scholar 

  • Brosh R, Rotter V . (2010). Transcriptional control of the proliferation cluster by the tumor suppressor p53. Mol Biosyst 6: 17–29.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  Google Scholar 

  • Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B . (2006). Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther 5: 1446–1451.

    Article  CAS  Google Scholar 

  • Bugler B, Schmitt E, Aressy B, Ducommun B . (2010). Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage. Mol Cancer 9: 29.

    Article  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  Google Scholar 

  • Essafi-Benkhadir K, Grosso S, Puissant A, Robert G, Essafi M, Deckert M et al. (2009). Dual role of Sp3 transcription factor as an inducer of apoptosis and a marker of tumour aggressiveness. PLoS One 4: e4478.

    Article  Google Scholar 

  • Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D et al. (2010). High-resolution profiling of gamma H2AX around DNA double strand breaks in the mammalian genome. EMBO J 29: 1446–1457.

    Article  CAS  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  Google Scholar 

  • Innocente SA, Lee JM . (2005). p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett 579: 1001–1007.

    Article  CAS  Google Scholar 

  • Jin W, Chen Y, Di GH, Miron P, Hou YF, Gao H et al. (2008). Estrogen receptor (ER) beta or p53 attenuates ER alpha-mediated transcriptional activation on the BRCA2 promoter. J Biol Chem 283: 29671–29680.

    Article  CAS  Google Scholar 

  • Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS et al. (2001). p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20: 5818–5825.

    Article  CAS  Google Scholar 

  • Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J . (1999). Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol 146: 573–584.

    Article  CAS  Google Scholar 

  • Korner K, Jerome V, Schmidt T, Muller R . (2001). Cell cycle regulation of the murine cdc25B promoter: essential role for nuclear factor-Y and a proximal repressor element. J Biol Chem 276: 9662–9669.

    Article  CAS  Google Scholar 

  • Koutsodontis G, Vasilaki E, Chou WC, Papakosta P, Kardassis D . (2005). Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis. Biochem J 389: 443–455.

    Article  CAS  Google Scholar 

  • Lambertini C, Pantano S, Dotto GP . (2010). Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes. PLoS One 5: e10369.

    Article  Google Scholar 

  • Langerod A, Zhao H, Borgan O, Nesland JM, Bukholm IR, Ikdahl T et al. (2007). TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9: R30.

    Article  Google Scholar 

  • Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY et al. (2010). Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res 70: 5807–5817.

    Article  CAS  Google Scholar 

  • Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK . (2005). Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171: 35–45.

    Article  CAS  Google Scholar 

  • Mantovani R . (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15–27.

    Article  CAS  Google Scholar 

  • Miyata H, Doki Y, Yamamoto H, Kishi K, Takemoto H, Fujiwara Y et al. (2001). Overexpression of CDC25B overrides radiation-induced G2-M arrest and results in increased apoptosis in esophageal cancer cells. Cancer Res 61: 3188–3193.

    CAS  Google Scholar 

  • Muller GA, Engeland K . (2009). The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription. FEBS J 277: 877–893.

    Article  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  Google Scholar 

  • Scian MJ, Carchman EH, Mohanraj L, Stagliano KE, Anderson MA, Deb D et al. (2008). Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene 27: 2583–2593.

    Article  CAS  Google Scholar 

  • Sugrue MM, Shin DY, Lee SW, Aaronson SA . (1997). Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 94: 9648–9653.

    Article  CAS  Google Scholar 

  • Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q et al. (2004). Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279: 53015–53022.

    Article  CAS  Google Scholar 

  • Torgeman A, Mor-Vaknin N, Zelin E, Ben-Aroya Z, Lochelt M, Flugel RM et al. (2001). Sp1-p53 heterocomplex mediates activation of HTLV-I long terminal repeat by 12-O-tetradecanoylphorbol-13-acetate that is antagonized by protein kinase C. Virology 281: 10–20.

    Article  CAS  Google Scholar 

  • Troester MA, Herschkowitz JI, Oh DS, He X, Hoadley KA, Barbier CS et al. (2006). Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6: 276.

    Article  Google Scholar 

  • Varmeh S, Manfredi JJ . (2009). Inappropriate activation of cyclin-dependent kinases by the phosphatase Cdc25b results in premature mitotic entry and triggers a p53-dependent checkpoint. J Biol Chem 284: 9475–9488.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  Google Scholar 

  • Wang B, Xiao Z, Ko HL, Ren EC . (2010). The p53 response element and transcriptional repression. Cell Cycle 9: 870–879.

    Article  CAS  Google Scholar 

  • Wierstra I . (2008). Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372: 1–13.

    Article  CAS  Google Scholar 

  • Zhou Y, Mehta KR, Choi AP, Scolavino S, Zhang X . (2003). DNA damage-induced inhibition of securin expression is mediated by p53. J Biol Chem 278: 462–470.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Bert Vogelstein (Howard Hughes Medical Institute, Baltimore USA) for providing the WT, p53−/− and p21−/− HCT116 cells. MD was a recipient of a post-doctoral fellowship from the CNRS (Centre National de la Recherche Scientifique). This work was supported by CNRS, Université Paul Sabatier, la région Midi-Pyrénées, l’Institut National du Cancer, the Cancéropôle Grand Sud-Ouest and la Ligue Nationale Contre le Cancer (Equipe labellisée 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Dozier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalvai, M., Mondesert, O., Bourdon, JC. et al. Cdc25B is negatively regulated by p53 through Sp1 and NF-Y transcription factors. Oncogene 30, 2282–2288 (2011). https://doi.org/10.1038/onc.2010.588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.588

Keywords

This article is cited by

Search

Quick links