Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma

Abstract

The detection of promoter region hypermethylation and transcriptional silencing has facilitated the identification of candidate renal cell carcinoma (RCC) tumour suppressor genes (TSGs). We have used a genome-wide strategy (methylated DNA immunoprecipitation (MeDIP) and whole-genome array analysis in combination with high-density expression array analysis) to identify genes that are frequently methylated and silenced in RCC. MeDIP analysis on 9 RCC tumours and 3 non-malignant normal kidney tissue samples was performed, and an initial shortlist of 56 candidate genes that were methylated by array analysis was further investigated; 9 genes were confirmed to show frequent promoter region methylation in primary RCC tumour samples (KLHL35 (39%), QPCT (19%), SCUBE3 (19%), ZSCAN18 (32%), CCDC8 (35%), FBN2 (34%), ATP5G2 (36%), PCDH8 (58%) and CORO6 (22%)). RNAi knockdown for KLHL35, QPCT, SCUBE3, ZSCAN18, CCDC8 and FBN2 resulted in an anchorage-independent growth advantage. Tumour methylation of SCUBE3 was associated with a significantly increased risk of cancer death or relapse (P=0.0046). The identification of candidate epigenetically inactivated RCC TSGs provides new insights into renal tumourigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Annes JP, Munger JS, Rifkin DB . (2003). Making sense of latent TGFbeta activation. J Cell Sci 116: 217–224.

    Article  CAS  Google Scholar 

  • Battagli C, Uzzo RG, Dulaimi E, Ibanez de Caceres I, Krassenstein R, Al-Saleem T et al. (2003). Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 63: 8695–8699.

    CAS  PubMed  Google Scholar 

  • Bray F, Sankila R, Ferlay J, Parkin DM . (2002). Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer 38: 99–166.

    Article  CAS  Google Scholar 

  • Breault JE, Shiina H, Igawa M, Ribeiro-Filho LA, Deguchi M, Enokida H et al. (2005). Methylation of the gamma-catenin gene is associated with poor prognosis of renal cell carcinoma. Clin Cancer Res 11: 557–564.

    CAS  PubMed  Google Scholar 

  • Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM . (2007). Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol 176: 355–367.

    Article  CAS  Google Scholar 

  • Chen H, Suzuki M, Nakamura Y, Ohira M, Ando S, Iida T et al. (2005). Aberrant methylation of FBN2 in human non-small cell lung cancer. Lung Cancer 50: 43–49.

    Article  Google Scholar 

  • Chowdhury S, Larkin JM, Gore ME . (2008). Recent advances in the treatment of renal cell carcinoma and the role of targeted therapies. Eur J Cancer 44: 2152–2161.

    Article  CAS  Google Scholar 

  • Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Köllermann J et al. (2006). Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res 12: 5040–5046.

    Article  CAS  Google Scholar 

  • Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER . (1998). Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer 22: 200–209.

    Article  CAS  Google Scholar 

  • Costa LJ, Drabkin HA . (2007). Renal cell carcinoma: new developments in molecular biology and potential for targeted therapies. Oncologist 12: 1404–1415.

    Article  CAS  Google Scholar 

  • Dahl E, Wiesmann F, Woenckhaus M, Stoehr R, Wild PJ, Veeck J et al. (2007). Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26: 5680–5691.

    Article  CAS  Google Scholar 

  • Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463: 360–363.

    Article  CAS  Google Scholar 

  • Dyer MR, Walker JE . (1993). Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase. Biochem J 293 (Part 1): 51–64.

    Article  CAS  Google Scholar 

  • Fischer WH, Spiess J . (1987). Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci USA 84: 3628–3632.

    Article  CAS  Google Scholar 

  • Foster K, Prowse A, van den Berg A, Fleming S, Hulsbeek MM, Crossey PA et al. (1994). Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 3: 2169–2173.

    Article  CAS  Google Scholar 

  • Grimmond S, Larder R, Van Hateren N, Siggers P, Hulsebos TJ, Arkell R et al. (2000). Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1). Genomics 70: 74–81.

    Article  CAS  Google Scholar 

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S et al. (1994). Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700–9704.

    Article  CAS  Google Scholar 

  • Hogg RP, Honorio S, Martinez A, Agathanggelou A, Dallol A, Fullwood P et al. (2002). Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer 38: 1585–1592.

    Article  CAS  Google Scholar 

  • Hoque MO, Begum S, Topaloglu O, Chatterjee A, Rosenbaum E, Van Criekinge W et al. (2006). Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J Natl Cancer Inst 98: 996–1004.

    Article  CAS  Google Scholar 

  • Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW . (2008). Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40: 445–456.

    Article  Google Scholar 

  • Ibanez de Caceres I, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P . (2006). Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res 66: 5021–5028.

    Article  CAS  Google Scholar 

  • Imoto I, Izumi H, Yokoi S, Hosoda H, Shibata T, Hosoda F et al. (2006). Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res 66: 4617–4626.

    Article  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML et al. (1993). Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317–1320.

    Article  CAS  Google Scholar 

  • Leshchenko VV, Kuo P-Y, Shaknovich R, Yang DT, Gellen T, Petrich A et al. (2010). Genome wide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 116: 1025–1034.

    Article  CAS  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  Google Scholar 

  • Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H . (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65: 4218–4227.

    Article  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  CAS  Google Scholar 

  • McRonald FE, Morris MR, Gentle D, Winchester L, Baban D, Ragoussis J et al. (2009). CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer 8: 31.

    Article  Google Scholar 

  • Morris MR, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T et al. (2008). Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma. Br J Cancer 98: 496–501.

    Article  CAS  Google Scholar 

  • Morris MR, Gentle D, Abdulrahman M, Maina EN, Gupta K, Banks RE et al. (2005). Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res 65: 4598–4606.

    Article  CAS  Google Scholar 

  • Morris MR, Hesson LB, Wagner KJ, Morgan NV, Astuti D, Lees RD et al. (2003). Multigene methylation analysis of Wilms′ tumour and adult renal cell carcinoma. Oncogene 22: 6794–6801.

    Article  CAS  Google Scholar 

  • Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H et al. (2004). Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J Clin Pathol 57: 706–711.

    Article  CAS  Google Scholar 

  • Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M et al. (2010). Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29: 2104–2117.

    Article  CAS  Google Scholar 

  • Morrissey C, Martinez A, Zatyka M, Agathanggelou A, Honorio S, Astuti D et al. (2001). Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res 61: 7277–7281.

    CAS  PubMed  Google Scholar 

  • Muthusamy V, Duraisamy S, Bradbury CM, Hobbs C, Curley DP, Nelson B et al. (2006). Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res 66: 11187–11193.

    Article  CAS  Google Scholar 

  • Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T . (1993). CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8: 1063–1067.

    CAS  PubMed  Google Scholar 

  • Pflug BR, Zheng H, Udan MS, D'Antonio JM, Marshall FF, Brooks JD et al. (2007). Endothelin-1 promotes cell survival in renal cell carcinoma through the ET(A) receptor. Cancer Lett 246: 139–148.

    Article  CAS  Google Scholar 

  • Pohl T, Zimmer M, Mugele K, Spiess J . (1991). Primary structure and functional expression of a glutaminyl cyclase. Proc Natl Acad Sci USA 88: 10059–10063.

    Article  CAS  Google Scholar 

  • Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F et al. (2008). Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100: 1260–1262.

    Article  CAS  Google Scholar 

  • Roadcap DW, Clemen CS, Bear JE . (2008). The role of mammalian coronins in development and disease. Subcell Biochem 48: 124–135.

    Article  Google Scholar 

  • Robinson PN, Godfrey M . (2000). The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37: 9–25.

    Article  CAS  Google Scholar 

  • Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63: 3735–3742.

    CAS  Google Scholar 

  • Thouënnon E, Elkahloun AG, Guillemot J, Gimenez-Roqueplo A-P, Bertherat J, Pierre A et al. (2007). Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. J Clin Endocrinol Metab 92: 4865–4872.

    Article  Google Scholar 

  • Tsunoda S, Smith E, De Young NJ, Wang X, Tian Z-Q, Liu J-F et al. (2009). Methylation of CLDN6, FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in esophageal squamous cell carcinoma. Oncol Rep 21: 1067–1073.

    Article  CAS  Google Scholar 

  • Urakami S, Shiina H, Enokida H, Hirata H, Kawamoto K, Kawakami T et al. (2006). Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin Cancer Res 12: 6989–6997.

    Article  CAS  Google Scholar 

  • Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T et al. (2010). Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 16: 21–33.

    Article  CAS  Google Scholar 

  • Yamada D, Kikuchi S, Williams YN, Sakurai-Yageta M, Masuda M, Maruyama T et al. (2006). Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118: 916–923.

    Article  CAS  Google Scholar 

  • Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M et al. (2002). Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2: 485–495.

    Article  CAS  Google Scholar 

  • Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW et al. (2006). Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25: 1070–1080.

    Article  CAS  Google Scholar 

  • Yu JS, Koujak S, Nagase S, Li C-M, Su T, Wang X et al. (2008). PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 27: 4657–4665.

    Article  CAS  Google Scholar 

  • Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J et al. (1994). Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124: 855–863.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Maher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M., Ricketts, C., Gentle, D. et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390–1401 (2011). https://doi.org/10.1038/onc.2010.525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.525

Keywords

Search

Quick links