Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The ecology of brain tumors: lessons learned from neurofibromatosis-1

Abstract

Traditionally, cancer studies have primarily focused on mutations that activate growth or survival pathways in susceptible pre-neoplastic/neoplastic cells. However, recent research has revealed a critical role for non-neoplastic cells within the tumor microenvironment in the process of cancer formation and progression. In addition, the existence of regional and developmental variations in susceptible cell types and supportive microenvironments support a model of tumorigenesis in which the dynamic symbiotic relationship between neoplastic and non-neoplastic cell types dictate where and when cancers form and grow. In this review, we highlight advances in neurofibromatosis type 1 (NF1) genetically engineered mouse brain tumor (glioma) modeling to reveal how cellular and molecular heterogeneity in both the pre-neoplastic/neoplastic and non-neoplastic cellular compartments contribute to gliomagenesis and glioma growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alcantara Llaguno S, Chen J, Kwon C, Jackson EL, Li Y, Burns DK et al. (2009). Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15: 45–56.

    Google Scholar 

  • Amankulor NM, Hambardzumyan D, Pyonteck SM, Becher OJ, Joyce JA, Holland EC . (2009). Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299–10308.

    CAS  Google Scholar 

  • Badie B, Schartner J, Klaver J, Vorpahl J . (1999). In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery 44: 1077–1082; discussion 1082–3.

    CAS  Google Scholar 

  • Bajenaru ML, Garbow JR, Perry A, Hernandez MR, Gutmann DH . (2005). Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Ann Neurol 57: 119–127.

    CAS  Google Scholar 

  • Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR et al. (2003). Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63: 8573–8577.

    CAS  Google Scholar 

  • Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH . (2002). Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22: 5100–5113.

    Article  CAS  Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221.

    CAS  Google Scholar 

  • Ballester R, Marchuk D, Boguski M, Saulino AM, Letcher R, Wigler M et al. (1990). The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63: 851–859.

    CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW . (1993). Cytotoxicity of microglia. Glia 7: 111–118.

    CAS  Google Scholar 

  • Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG et al. (2010). The neurofibromatosis type 1 tumor suppressor controls cell growth by regulating signal transducer and activator of transcription-3 activity in vitro and in vivo. Cancer Res 70: 1356–1366.

    CAS  Google Scholar 

  • Barcellos-Hoff MH, Ravani SA . (2000). Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60: 1254–1260.

    CAS  Google Scholar 

  • Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J . (1992). Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356: 713–715.

    CAS  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: 848–851.

    CAS  Google Scholar 

  • Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P et al. (1996). Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12: 144–148.

    CAS  Google Scholar 

  • Brown JA, Gianino SM, Gutmann DH . (2010). Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J Neurosci 30: 5579–5589.

    CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.

    CAS  Google Scholar 

  • Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL et al. (1983). Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784.

    CAS  Google Scholar 

  • Charles N, Ozawa T, Squatrito M, Bleau A, Brennan CW, Hambardzumyan D et al. (2010). Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6: 141–152.

    CAS  Google Scholar 

  • Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R et al. (2005). Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24: 5053–5068.

    CAS  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397.

    CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z . (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490.

    CAS  Google Scholar 

  • Coussens LM, Werb Z . (2010). Inflammation and cancer. Nature 420: 860–867.

    Google Scholar 

  • Dabbous MK, Walker R, Haney L, Carter LM, Nicolson GL, Woolley DE . (1986). Mast cells and matrix degradation at sites of tumour invasion in rat mammary adenocarcinoma. Br J Cancer 54: 459–465.

    CAS  Google Scholar 

  • Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH . (2008). Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res 68: 10358–10366.

    CAS  Google Scholar 

  • Dasgupta B, Dugan LL, Gutmann DH . (2003). The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J Neurosci 23: 8949–8954.

    CAS  Google Scholar 

  • Dasgupta B, Li W, Perry A, Gutmann DH . (2005a). Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Res 65: 236–245.

    CAS  Google Scholar 

  • Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH . (2005b). Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res 65: 2755–2760.

    CAS  Google Scholar 

  • de Haas AH, Boddeke HW, Biber K . (2008). Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56: 888–894.

    Google Scholar 

  • DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC et al. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69: 265–273.

    CAS  Google Scholar 

  • Dighe AS, Richards E, Old LJ, Schreiber RD . (1994). Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1: 447–456.

    CAS  Google Scholar 

  • Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U . (2008). Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299: 2423–2436.

    CAS  Google Scholar 

  • Donovan S, See W, Bonifas J, Stokoe D, Shannon KM . (2002). Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2: 507–514.

    CAS  Google Scholar 

  • Dryja TP, Cavenee W, White R, Rapaport JM, Petersen R, Albert DM et al. (1984). Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med 310: 550–553.

    CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991–998.

    CAS  Google Scholar 

  • Egeblad M, Littlepage LE, Werb Z . (2005). The fibroblastic coconspirator in cancer progression. Cold Spring Harb Symp Quant Biol 70: 383–388.

    CAS  Google Scholar 

  • Ehrhardt A, David MD, Ehrhardt GR, Schrader JW . (2004). Distinct mechanisms determine the patterns of differential activation of H-Ras, N-Ras, K-Ras 4B, and M-Ras by receptors for growth factors or antigen. Mol Cell Biol 24: 6311–6323.

    CAS  Google Scholar 

  • Elkabes S, DiCicco-Bloom EM, Black IB . (1996). Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16: 2508–2521.

    CAS  Google Scholar 

  • Fearon ER, Vogelstein B . (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    CAS  Google Scholar 

  • Forstreuter F, Lucius R, Mentlein R . (2002). Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 132: 93–98.

    CAS  Google Scholar 

  • Gabbiani G, Chaponnier C, Hüttner I . (1978). Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 76: 561–568.

    CAS  Google Scholar 

  • Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G . (1972). Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 135: 719–734.

    CAS  Google Scholar 

  • Giordano MJ, Mahadeo DK, He YY, Geist RT, Hsu C, Gutmann DH . (1996). Increased expression of the neurofibromatosis 1 (NF1) gene product, neurofibromin, in astrocytes in response to cerebral ischemia. J Neurosci Res 43: 246–253.

    CAS  Google Scholar 

  • Graeber MB, Scheithauer BW, Kreutzberg GW . (2002). Microglia in brain tumors. Glia 40: 252–259.

    Google Scholar 

  • Graves DT, Jiang YL, Williamson MJ, Valente AJ . (1989). Identification of monocyte chemotactic activity produced by malignant cells. Science 245: 1490–1493.

    CAS  Google Scholar 

  • Green SR, Han KH, Chen Y, Almazan F, Charo IF, Miller YI et al. (2006). The CC chemokine MCP-1 stimulates surface expression of CX3CR1 and enhances the adhesion of monocytes to fractalkine/CX3CL1 via p38 MAPK. J Immunol 176: 7412–7420.

    CAS  Google Scholar 

  • Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeritz RE et al. (1997). The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278: 51–57.

    CAS  Google Scholar 

  • Gutmann DH, Daginakatte GC . (2007). Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16: 1098–1112.

    Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . (1999). Creation of human tumour cells with defined genetic elements. Nature 400: 464–468.

    CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  Google Scholar 

  • Hart IR, Fidler IJ . (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40: 2281–2287.

    CAS  Google Scholar 

  • Hawes JJ, Tuskan RG, Reilly KM . (2007). Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies. Neurogenetics 8: 121–130.

    CAS  Google Scholar 

  • Hegedus B, Banerjee D, Yeh TH, Rothermich S, Perry A, Rubin JB et al. (2008). Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res 68: 1520–1528.

    CAS  Google Scholar 

  • Hegedus B, Hughes FW, Garbow JR, Gianino S, Banerjee D, Kim K et al. (2009). Optic nerve dysfunction in a mouse model of neurofibromatosis-1 optic glioma. J Neuropathol Exp Neurol 68: 542–551.

    Google Scholar 

  • Held-Feindt J, Hattermann K, Müerköster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H et al. (2010). CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 316: 1553–1566.

    CAS  Google Scholar 

  • Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC . (1997). Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17: 3217–3224.

    CAS  Google Scholar 

  • Huettner C, Paulus W, Roggendorf W . (1995). Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146: 317–322.

    CAS  Google Scholar 

  • Huson SM, Harper PS, Compston DA . (1988). Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111 (Pt 6): 1355–1381.

    Google Scholar 

  • Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K . (2005). The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102: 8573–8578.

    CAS  Google Scholar 

  • Johansson G, Mahller YY, Collins MH, Kim M, Nobukuni T, Perentesis J et al. (2008). Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther 7: 1237–1245.

    CAS  Google Scholar 

  • Kerber M, Reiss Y, Wickersheim A, Jugold M, Kiessling F, Heil M et al. (2008). Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res 68: 7342–7351.

    CAS  Google Scholar 

  • Keski-Oja J, Raghow R, Sawdey M, Loskutoff DJ, Postlethwaite AE, Kang AH et al. (1988). Regulation of mRNAs for type-1 plasminogen activator inhibitor, fibronectin, and type I procollagen by transforming growth factor-beta. Divergent responses in lung fibroblasts and carcinoma cells. J Biol Chem 263: 3111–3115.

    CAS  Google Scholar 

  • Khalaf WF, Yang F, Chen S, White HA, Bessler W, Ingram DA et al. (2007). K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 178: 2527–2534.

    CAS  Google Scholar 

  • Klein RS, Rubin JB . (2004). Immune and nervous system CXCL12 and CXCR4: parallel roles in patterning and plasticity. Trends Immunol 25: 306–314.

    CAS  Google Scholar 

  • Knudson AG . (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823.

    Google Scholar 

  • Kunkel P, Müller S, Schirmacher P, Stavrou D, Fillbrandt R, Westphal M et al. (2001). Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro Oncol 3: 82–88.

    CAS  Google Scholar 

  • Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH . (2010). Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 24: 2317–2329.

    CAS  Google Scholar 

  • Lee YJ, Streuli CH . (1999). Extracellular matrix selectively modulates the response of mammary epithelial cells to different soluble signaling ligands. J Biol Chem 274: 22401–22408.

    CAS  Google Scholar 

  • Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST . (1997). Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol 93: 518–527.

    CAS  Google Scholar 

  • Li F, Munchhof AM, White HA, Mead LE, Krier TR, Fenoglio A et al. (2006). Neurofibromin is a novel regulator of RAS-induced signals in primary vascular smooth muscle cells. Hum Mol Genet 15: 1921–1930.

    CAS  Google Scholar 

  • Li H, Liu Y, Zhang Q, Jing Y, Chen S, Song Z et al. (2009). Ras dependent paracrine secretion of osteopontin by Nf1+/− osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model. Pediatr Res 65: 613–618.

    CAS  Google Scholar 

  • Lin EY, Li J, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66: 11238–11246.

    CAS  Google Scholar 

  • Listernick R, Charrow J, Greenwald M, Mets M . (1994). Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr 125: 63–66.

    CAS  Google Scholar 

  • Listernick R, Charrow J, Greenwald MJ, Esterly NB . (1989). Optic gliomas in children with neurofibromatosis type 1. J Pediatr 114: 788–792.

    CAS  Google Scholar 

  • Listernick R, Darling C, Greenwald M, Strauss L, Charrow J . (1995). Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J Pediatr 127: 718–722.

    CAS  Google Scholar 

  • Listernick R, Louis DN, Packer RJ, Gutmann DH . (1997). Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41: 143–149.

    CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007). WHO Classification of Tumours of the Central Nervous System. IARC Press: Lyon.

    Google Scholar 

  • Ludwig HC, Feiz-Erfan I, Bockermann V, Behnke-Mursch J, Schallock K, Markakis E . (2000). Expression of nitric oxide synthase isozymes (NOS I-III) by immunohistochemistry and DNA in situ hybridization. Correlation with macrophage presence, vascular endothelial growth factor (VEGF) and oedema volumetric data in 220 glioblastomas. Anticancer Res 20: 299–304.

    CAS  Google Scholar 

  • Martinet N, Beck G, Bernard V, Plenat F, Vaillant P, Schooneman F et al. (1992). Mechanism for the recruitment of macrophages to cancer site. In vivo concentration gradient of monocyte chemotactic activity. Cancer 70: 854–860.

    CAS  Google Scholar 

  • Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M . (2004). Microglia promote the death of developing Purkinje cells. Neuron 41: 535–547.

    Google Scholar 

  • McDaniel AS, Allen JD, Park S, Jaffer ZM, Michels EG, Burgin SJ et al. (2008). Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood 112: 4646–4654.

    CAS  Google Scholar 

  • Morgan KJ, Rowley MA, Wiesner SM, Hasz DE, Van Ness B, Largaespada DA . (2007). The GAP-related domain of neurofibromin attenuates proliferation and downregulates N- and K-Ras activation in Nf1-negative AML cells. Leuk Res 31: 1107–1113.

    CAS  Google Scholar 

  • Munchhof AM, Li F, White HA, Mead LE, Krier TR, Fenoglio A et al. (2006). Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 15: 1858–1869.

    CAS  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59: 5002–5011.

    CAS  Google Scholar 

  • Pemov A, Park C, Reilly KM, Stewart DR . (2010). Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency. BMC Genomics 11: 194.

    Google Scholar 

  • Pollard JW . (2008). Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84: 623–630.

    CAS  Google Scholar 

  • Prendergast GC, Rane N . (2001). Farnesyltransferase inhibitors: mechanism and applications. Expert Opin Investig Drugs 10: 2105–2116.

    CAS  Google Scholar 

  • Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T . (2000). Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26: 109–113.

    CAS  Google Scholar 

  • Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J, Bronson RT et al. (2004). Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA 101: 13008–13013.

    CAS  Google Scholar 

  • Ren Y, Chan HM, Li Z, Lin C, Nicholls J, Chen CF et al. (2004). Upregulation of macrophage migration inhibitory factor contributes to induced N-Myc expression by the activation of ERK signaling pathway and increased expression of interleukin-8 and VEGF in neuroblastoma. Oncogene 23: 4146–4154.

    CAS  Google Scholar 

  • Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB . (1985). Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 82: 119–123.

    CAS  Google Scholar 

  • Roumier A, Béchade C, Poncer J, Smalla K, Tomasello E, Vivier E et al. (2004). Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24: 11421–11428.

    CAS  Google Scholar 

  • Rozario T, DeSimone DW . (2010). The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341: 126–140.

    CAS  Google Scholar 

  • Sandsmark DK, Zhang H, Hegedus B, Pelletier CL, Weber JD, Gutmann DH . (2007). Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes. Cancer Res 67: 4790–4799.

    CAS  Google Scholar 

  • Sasaki A, Ishiuchi S, Kanda T, Hasegawa M, Nakazato Y . (2001). Analysis of interleukin-6 gene expression in primary human gliomas, glioblastoma xenografts, and glioblastoma cell lines. Brain Tumor Pathol 18: 13–21.

    CAS  Google Scholar 

  • Schor SL, Schor AM, Grey AM, Rushton G . (1988). Foetal and cancer patient fibroblasts produce an autocrine migration-stimulating factor not made by normal adult cells. J Cell Sci 90 (Pt 3): 391–399.

    CAS  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107–1111.

    CAS  Google Scholar 

  • Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD et al. (2007). Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 67: 890–900.

    CAS  Google Scholar 

  • Singhal S, Birch JM, Kerr B, Lashford L, Evans DG . (2002). Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child 87: 65–70.

    CAS  Google Scholar 

  • Sonoda Y, Ozawa T, Hirose Y, Aldape KD, McMahon M, Berger MS et al. (2001). Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61: 4956–4960.

    CAS  Google Scholar 

  • Stern J, Jakobiec FA, Housepian EM . (1980). The architecture of optic nerve gliomas with and without neurofibromatosis. Arch Ophthalmol 98: 505–511.

    CAS  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137–146.

    CAS  Google Scholar 

  • Sun T, Gianino SM, Jackson E, Piwnica-Worms D, Gutmann DH, Rubin JB . (2010). CXCL12 alone is insufficient for gliomagenesis in Nf1 mutant mice. J Neuroimmunol 1: 1–6.

    Google Scholar 

  • Suzuki M, Mose ES, Montel V, Tarin D . (2006). Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169: 673–681.

    CAS  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P et al. (2005). Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8: 323–335.

    CAS  Google Scholar 

  • Thiagalingam S, Flaherty M, Billson F, North K . (2004). Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology 111: 568–577.

    Google Scholar 

  • Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y . (2002). Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 5: 95–96.

    CAS  Google Scholar 

  • Tremblay G . (1979). Stromal aspects of breast carcinoma. Exp Mol Pathol 31: 248–260.

    CAS  Google Scholar 

  • Ueoka DI, Nogueira J, Campos JC, Maranhão Filho P, Ferman S, Lima MA . (2009). Brainstem gliomas—retrospective analysis of 86 patients. J Neurol Sci 281: 20–23.

    Google Scholar 

  • Vousden KH . (2002). Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602: 47–59.

    CAS  Google Scholar 

  • Wagner S, Czub S, Greif M, Vince GH, Süss N, Kerkau S et al. (1999). Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 82: 12–16.

    CAS  Google Scholar 

  • Walsh AB, Bar-Sagi D . (2001). Differential activation of the Rac pathway by Ha-Ras and K-Ras. J Biol Chem 276: 15609–15615.

    CAS  Google Scholar 

  • Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM et al. (2009). Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27: 2393–2404.

    CAS  Google Scholar 

  • Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D et al. (2010). Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res 70: 5717–5727.

    CAS  Google Scholar 

  • Warrington NM, Woerner BM, Daginakatte GC, Dasgupta B, Perry A, Gutmann DH et al. (2007). Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Res 67: 8588–8595.

    CAS  Google Scholar 

  • Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA et al. (2004). IL-6 is required for glioma development in a mouse model. Oncogene 23: 3308–3316.

    CAS  Google Scholar 

  • Werb Z, Banda MJ, Jones PA . (1980). Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins, and collagen by proteinases isolated from macrophages. J Exp Med 152: 1340–1357.

    CAS  Google Scholar 

  • Widemann BC, Salzer WL, Arceci RJ, Blaney SM, Fox E, End D et al. (2006). Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol 24: 507–516.

    CAS  Google Scholar 

  • Williams JA, Pontzer CH, Shacter E . (2000). Regulation of macrophage interleukin-6 (IL-6) and IL-10 expression by prostaglandin E2: the role of p38 mitogen-activated protein kinase. J Interferon Cytokine Res 20: 291–298.

    CAS  Google Scholar 

  • Xu J, Ismat FA, Wang T, Yang J, Epstein JA . (2007). NF1 regulates a Ras-dependent vascular smooth muscle proliferative injury response. Circulation 116: 2148–2156.

    CAS  Google Scholar 

  • Yan J, Chen S, Zhang Y, Li X, Li Y, Wu X et al. (2008). Rac1 mediates the osteoclast gains-in-function induced by haploinsufficiency of Nf1. Hum Mol Genet 17: 936–948.

    CAS  Google Scholar 

  • Yang F, Chen S, Robling AG, Yu X, Nebesio TD, Yan J et al. (2006). Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest 116: 2880–2891.

    CAS  Google Scholar 

  • Yeh TH, Lee DY, Gianino SM, Gutmann DH . (2009). Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57: 1239–1249.

    Google Scholar 

  • Zhu Y, Harada T, Liu L, Lush ME, Guignard F, Harada C et al. (2005). Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132: 5577–5588.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Gutmann Laboratory for their suggestions and comments during the preparation of this manuscript. We also thank Ms Samantha Higer for generating the illustrations. This work was supported in part by a grant from the National Cancer Institute (U01-CA141549) to DHG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D H Gutmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pong, W., Gutmann, D. The ecology of brain tumors: lessons learned from neurofibromatosis-1. Oncogene 30, 1135–1146 (2011). https://doi.org/10.1038/onc.2010.519

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.519

Keywords

This article is cited by

Search

Quick links