Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells

A Corrigendum to this article was published on 08 August 2016

Abstract

The low-density lipoprotein receptor-related protein (LRP1B), encoding an endocytic LDL-family receptor, is among the 10 most significantly deleted genes across 3312 human cancer specimens. However, currently the apparently crucial role of this lipoprotein receptor in carcinogenesis is not clear. Here we show that LRP1B inactivation (by chromosomal, epigenetic and microRNA (miR)-mediated mechanisms) results in changes to the tumor environment that confer cancer cells an increased growth and invasive capacity. LRP1B displays frequent DNA copy number loss and CpG island methylation, resulting in mRNA underexpression. By using CpG island reporters methylated in vitro, we found that DNA methylation disrupts a functional binding site for the histone-acetyltransferase p300 located at intron 1. We identified and validated an miR targeting LRP1B (miR-548a-5p), which is overexpressed in cancer cell lines as a result of 8q22 DNA gains. Restoration of LRP1B impaired in vitro and in vivo tumor growth, inhibited cell invasion and led to a reduction of matrix metalloproteinase 2 in the extracellular medium. We emphasized the role of an endocytic receptor acting as a tumor suppressor by modulating the extracellular environment composition in a way that constrains the invasive behavior of the cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

fNMTC:

familial non-medullary thyroid cancer

FTA:

follicular thyroid adenoma

FTC:

follicular thyroid carcinoma

LRP1B:

low-density lipoprotein receptor-related protein

miR:

microRNA

mLRP1B:

LRP1B minireceptor

NMTC:

non-medullary thyroid cancer

PTC:

papillary thyroid carcinoma

qRT–PCR:

quantitative real-time PCR

TSA:

trichostatin A

uPA:

urokinase plasminogen activator

UTC:

undifferentiated thyroid carcinoma

5AZA:

5-aza-2′-deoxycytidine

References

  • Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R . (1995). A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374: 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Asami Y, Mori M, Koshino H, Sekiyama Y, Teruya T, Simizu S et al. (2009). A cell-based screening to detect inhibitors of BRAF signaling pathway. J Antibiot (Tokyo) 62: 105–107.

    Article  CAS  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. (2010). The landscape of somatic copy-number alteration across human cancers. Nature 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bignell GR, Canzian F, Shayeghi M, Stark M, Shugart YY, Biggs P et al. (1997). Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet 61: 1123–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canzian F, Amati P, Harach HR, Kraimps JL, Lesueur F, Barbier J et al. (1998). A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet 63: 1743–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaco BM, Batista PF, Sobrinho LG, Leite V . (2008). Mapping a new familial thyroid epithelial neoplasia susceptibility locus to chromosome 8p23.1-p22 by high-density snp genome-wide linkage analysis. J Clin Endocrinol Metab 93: 4426–4430.

    Article  CAS  PubMed  Google Scholar 

  • Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP et al. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8: R215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark SJ, Harrison J, Frommer M . (1995). CpNpG methylation in mammalian cells. Nat Genet 10: 20–27.

    Article  CAS  PubMed  Google Scholar 

  • Dedieu S, Langlois B, Devy J, Sid B, Henriet P, Sartelet H et al. (2008). LRP-1 silencing prevents malignant cell invasion despite increased pericellular proteolytic activities. Mol Cell Biol 28: 2980–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desrosiers RR, Rivard ME, Grundy PE, Annabi B . (2006). Decrease in LDL receptor-related protein expression and function correlates with advanced stages of Wilms tumors. Pediatr Blood Cancer 46: 40–49.

    Article  PubMed  Google Scholar 

  • Emonard H, Bellon G, de Diesbach P, Mettlen M, Hornebeck W, Courtoy PJ . (2005). Regulation of matrix metalloproteinase (MMP) activity by the low-density lipoprotein receptor-related protein (LRP). A new function for an ‘old friend’. Biochimie 87: 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Emonard H, Bellon G, Troeberg L, Berton A, Robinet A, Henriet P et al. (2004). Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2.TIMP-2 complex through a thrombospondin-independent mechanism. J Biol Chem 279: 54944–54951.

    Article  CAS  PubMed  Google Scholar 

  • Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF et al. (2000). Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24: 300–303.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsdottir SM, Schlingemann J, Rada-Iglesias A, Schallmeiner E, Kamali-Moghaddam M, Wadelius C et al. (2007). In vitro analysis of DNA-protein interactions by proximity ligation. Proc Natl Acad Sci USA 104: 3067–3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A et al. (2005). Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA 102: 1643–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn-Dantona E, Ruiz JF, Bornstein P, Strickland DK . (2001). The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem 276: 15498–15503.

    Article  CAS  PubMed  Google Scholar 

  • He H, Nagy R, Liyanarachchi S, Jiao H, Li W, Suster S et al. (2009). A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res 69: 625–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV et al. (1998). Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26: 362–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz J, Clouthier DE, Hammer RE . (1992). LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71: 411–421.

    Article  CAS  PubMed  Google Scholar 

  • Herz J, Strickland DK . (2001). LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108: 779–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horlings HM, Lai C, Nuyten DS, Halfwerk H, Kristel P, van Beers E et al. (2010). Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin Cancer Res 16: 651–663.

    Article  CAS  PubMed  Google Scholar 

  • Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M et al. (1997). Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90: 4699–4704.

    CAS  PubMed  Google Scholar 

  • Knisely JM, Li Y, Griffith JM, Geuze HJ, Schwartz AL, Bu G . (2007). Slow endocytosis of the LDL receptor-related protein 1B: implications for a novel cytoplasmic tail conformation. Exp Cell Res 313: 3298–3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno T, Otsuka A, Girard L, Sato M, Iwakawa R, Ogiwara H et al. (2010). A catalog of genes homozygously deleted in human lung cancer and the candidacy of PTPRD as a tumor suppressor gene. Genes Chromosomes Cancer 49: 342–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Knisely JM, Lu W, McCormick LM, Wang J, Henkin J et al. (2002). Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J Biol Chem 277: 42366–42371.

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CX, Li Y, Obermoeller-McCormick LM, Schwartz AL, Bu G . (2001). The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J Biol Chem 276: 28889–28896.

    Article  CAS  PubMed  Google Scholar 

  • Liu CX, Musco S, Lisitsina NM, Forgacs E, Minna JD, Lisitsyn NA . (2000a). LRP-DIT, a putative endocytic receptor gene, is frequently inactivated in non-small cell lung cancer cell lines. Cancer Res 60: 1961–1967.

    CAS  PubMed  Google Scholar 

  • Liu CX, Musco S, Lisitsina NM, Yaklichkin SY, Lisitsyn NA . (2000b). Genomic organization of a new candidate tumor suppressor gene, LRP1B. Genomics 69: 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Liu CX, Ranganathan S, Robinson S, Strickland DK . (2007). gamma-Secretase-mediated release of the low density lipoprotein receptor-related protein 1B intracellular domain suppresses anchorage-independent growth of neuroglioma cells. J Biol Chem 282: 7504–7511.

    Article  CAS  PubMed  Google Scholar 

  • Malchoff CD, Sarfarazi M, Tendler B, Forouhar F, Whalen G, Joshi V et al. (2000). Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab 85: 1758–1764.

    CAS  PubMed  Google Scholar 

  • Malone CS, Miner MD, Doerr JR, Jackson JP, Jacobsen SE, Wall R et al. (2001). CmC(A/T)GG DNA methylation in mature B cell lymphoma gene silencing. Proc Natl Acad Sci USA 98: 10404–10409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschang P, Brich J, Weeber EJ, Sweatt JD, Shelton JM, Richardson JA et al. (2004). Normal development and fertility of knockout mice lacking the tumor suppressor gene LRP1b suggest functional compensation by LRP1. Mol Cell Biol 24: 3782–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateus AR, Simoes-Correia J, Figueiredo J, Heindl S, Alves CC, Suriano G et al. (2009). E-cadherin mutations and cell motility: a genotype-phenotype correlation. Exp Cell Res 315: 1393–1402.

    Article  CAS  PubMed  Google Scholar 

  • May P, Woldt E, Matz RL, Boucher P . (2007). The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • McKay JD, Lesueur F, Jonard L, Pastore A, Williamson J, Hoffman L et al. (2001). Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet 69: 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM et al. (1996). p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12: 1565–1569.

    CAS  PubMed  Google Scholar 

  • Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A et al. (2008). Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68: 5795–5802.

    Article  CAS  PubMed  Google Scholar 

  • Nykjaer A, Petersen CM, Moller B, Jensen PH, Moestrup SK, Holtet TL et al. (1992). Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 267: 14543–14546.

    CAS  PubMed  Google Scholar 

  • Prazeres HJ, Rodrigues F, Soares P, Naidenov P, Figueiredo P, Campos B et al. (2008). Loss of heterozygosity at 19p13.2 and 2q21 in tumours from familial clusters of non-medullary thyroid carcinoma. Fam Cancer 7: 141–149.

    Article  PubMed  Google Scholar 

  • Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R et al. (2010). Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 29: 392–402.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FR, Meireles AM, Rocha AS, Teixeira MR . (2008). Conventional and molecular cytogenetics of human non-medullary thyroid carcinoma: characterization of eight cell line models and review of the literature on clinical samples. BMC Cancer 8: 371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rikitake Y, Moran E . (1992). DNA-binding properties of the E1A-associated 300-kilodalton protein. Mol Cell Biol 12: 2826–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy R, Yang J, Moses MA . (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27: 5287–5297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA et al. (2008). Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 93: 4331–4341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiroshima T, Oka C, Kawaichi M . (2009). Identification of LRP1B-interacting proteins and inhibition of protein kinase Calpha-phosphorylation of LRP1B by association with PICK1. FEBS Lett 583: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Song H, Li Y, Lee J, Schwartz AL, Bu G . (2009). Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 69: 879–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stankov K, Pastore A, Toschi L, McKay J, Lesueur F, Kraimps JL et al. (2004). Allelic loss on chromosomes 2q21 and 19p 13.2 in oxyphilic thyroid tumors. Int J Cancer 111: 463–467.

    Article  CAS  PubMed  Google Scholar 

  • Suh I, Filetti S, Vriens MR, Guerrero MA, Tumino S, Wong M et al. (2009). Distinct loci on chromosome 1q21 and 6q22 predispose to familial nonmedullary thyroid cancer: a SNP array-based linkage analysis of 38 families. Surgery 146: 1073–1080.

    Article  PubMed  Google Scholar 

  • Tanaga K, Bujo H, Zhu Y, Kanaki T, Hirayama S, Takahashi K et al. (2004). LRP1B attenuates the migration of smooth muscle cells by reducing membrane localization of urokinase and PDGF receptors. Arterioscler Thromb Vasc Biol 24: 1422–1428.

    Article  CAS  PubMed  Google Scholar 

  • Toth M, Muller U, Doerfler W . (1990). Establishment of de novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J Mol Biol 214: 673–683.

    Article  CAS  PubMed  Google Scholar 

  • Ulisse S, Baldini E, Sorrenti S, D′Armiento M . (2009). The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets 9: 32–71.

    Article  CAS  PubMed  Google Scholar 

  • Walker LC, Harris GC, Wells JE, Robinson BA, Morris CM . (2008). Association of chromosome band 8q22 copy number gain with high grade invasive breast carcinomas by assessment of core needle biopsies. Genes Chromosomes Cancer 47: 405–417.

    Article  CAS  PubMed  Google Scholar 

  • Woodcock DM, Lawler CB, Linsenmeyer ME, Doherty JP, Warren WD . (1997). Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem 272: 7810–7816.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Strickland DK, Bornstein P . (2001). Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 276: 8403–8408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding from grants from the Portuguese Foundation for Science and Technology (SFRH/BD30041/2006 and PTDC/SAU-OBD/101242/2008), the Portuguese Society of Endocrinology and Metabolism (Edward Limber Prize) and the Portuguese Ministry of Health (project 13/2007). José Cameselle-Teijeiro was supported by Grant PS09/02050-FEDER, from the Ministry of Science and Innovation (Instituto de Salud Carlos III), Spain. IPATIMUP is an associated laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by the Portuguese Foundation for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Soares.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prazeres, H., Torres, J., Rodrigues, F. et al. Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 30, 1302–1317 (2011). https://doi.org/10.1038/onc.2010.512

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.512

Keywords

This article is cited by

Search

Quick links